BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ausborn J, Koizumi H, Barnett WH, John TT, Zhang R, Molkov YI, Smith JC, Rybak IA. Organization of the core respiratory network: Insights from optogenetic and modeling studies. PLoS Comput Biol 2018;14:e1006148. [PMID: 29698394 DOI: 10.1371/journal.pcbi.1006148] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Phillips RS, Koizumi H, Molkov YI, Rubin JE, Smith JC. Predictions and experimental tests of a new biophysical model of the mammalian respiratory oscillator. eLife 2022;11:e74762. [DOI: 10.7554/elife.74762] [Reference Citation Analysis]
2 Burgraff NJ, Phillips RS, Severs LJ, Bush NE, Baertsch NA, Ramirez JM. Inspiratory rhythm generation is stabilized by Ih. J Neurophysiol 2022;128:181-96. [PMID: 35675444 DOI: 10.1152/jn.00150.2022] [Reference Citation Analysis]
3 Turk AZ, Bishop M, Adeck A, SheikhBahaei S. Astrocytic modulation of central pattern generating motor circuits. Glia 2022. [PMID: 35212422 DOI: 10.1002/glia.24162] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Daniel Gómez C, Rasmussen CM, Rekling JC. GABAergic Inhibition of Presynaptic Ca2+ Transients in Respiratory PreBötzinger Neurons in Organotypic Slice Cultures. eNeuro 2021;8:ENEURO. [PMID: 34380658 DOI: 10.1523/ENEURO.0154-21.2021] [Reference Citation Analysis]
5 Barnett WH, Baekey DM, Paton JFR, Dick TE, Wehrwein EA, Molkov YI. Heartbeats entrain breathing via baroreceptor-mediated modulation of expiratory activity. Exp Physiol 2021;106:1181-95. [PMID: 33749038 DOI: 10.1113/EP089365] [Reference Citation Analysis]
6 Hülsmann S, Hagos L, Eulenburg V, Hirrlinger J. Inspiratory Off-Switch Mediated by Optogenetic Activation of Inhibitory Neurons in the preBötzinger Complex In Vivo. Int J Mol Sci 2021;22:2019. [PMID: 33670653 DOI: 10.3390/ijms22042019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Furuya WI, Dhingra RR, Trevizan-baú P, Mcallen RM, Dutschmann M. The role of glycinergic inhibition in respiratory pattern formation and cardio-respiratory coupling in rats. Current Research in Physiology 2021;4:80-93. [DOI: 10.1016/j.crphys.2021.03.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Shevtsova NA, Ha NT, Rybak IA, Dougherty KJ. Neural Interactions in Developing Rhythmogenic Spinal Networks: Insights From Computational Modeling. Front Neural Circuits 2020;14:614615. [PMID: 33424558 DOI: 10.3389/fncir.2020.614615] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
9 Hülsmann S. The post‐inspiratory complex (PiCo), what is the evidence? J Physiol 2021;599:357-9. [DOI: 10.1113/jp280492] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Hérent C, Diem S, Fortin G, Bouvier J. Absent phasing of respiratory and locomotor rhythms in running mice. Elife 2020;9:e61919. [PMID: 33258770 DOI: 10.7554/eLife.61919] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Segers LS, Nuding SC, Ott MM, O'Connor R, Morris KF, Lindsey BG. Blood pressure drives multispectral tuning of inspiration via a linked-loop neural network. J Neurophysiol 2020;124:1676-97. [PMID: 32965158 DOI: 10.1152/jn.00442.2020] [Reference Citation Analysis]
12 Flor KC, Barnett WH, Karlen-Amarante M, Molkov YI, Zoccal DB. Inhibitory control of active expiration by the Bötzinger complex in rats. J Physiol 2020;598:4969-94. [PMID: 32621515 DOI: 10.1113/JP280243] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
13 Ghali MGZ. Retracted: Control of hypoglossal pre‐inspiratory discharge. Exp Physiol 2020;105:1232-55. [DOI: 10.1113/ep087329] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 George Zaki Ghali M. Midbrain control of breathing and blood pressure: The role of periaqueductal gray matter and mesencephalic collicular neuronal microcircuit oscillators. Eur J Neurosci 2020;52:3879-902. [PMID: 32227408 DOI: 10.1111/ejn.14727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
15 Kallurkar PS, Grover C, Picardo MCD, Del Negro CA. Evaluating the Burstlet Theory of Inspiratory Rhythm and Pattern Generation. eNeuro 2020;7:ENEURO. [PMID: 31888961 DOI: 10.1523/ENEURO.0314-19.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
16 Dereli AS, Yaseen Z, Carrive P, Kumar NN. Adaptation of Respiratory-Related Brain Regions to Long-Term Hypercapnia: Focus on Neuropeptides in the RTN. Front Neurosci 2019;13:1343. [PMID: 31920508 DOI: 10.3389/fnins.2019.01343] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
17 Hirrlinger J, Marx G, Besser S, Sicker M, Köhler S, Hirrlinger PG, Wojcik SM, Eulenburg V, Winkler U, Hülsmann S. GABA-Glycine Cotransmitting Neurons in the Ventrolateral Medulla: Development and Functional Relevance for Breathing. Front Cell Neurosci 2019;13:517. [PMID: 31803026 DOI: 10.3389/fncel.2019.00517] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
18 Li EZ, Garcia-Ramirez DL, Dougherty KJ. Flexor and Extensor Ankle Afferents Broadly Innervate Locomotor Spinal Shox2 Neurons and Induce Similar Effects in Neonatal Mice. Front Cell Neurosci 2019;13:452. [PMID: 31649510 DOI: 10.3389/fncel.2019.00452] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Phillips RS, Rubin JE. Effects of persistent sodium current blockade in respiratory circuits depend on the pharmacological mechanism of action and network dynamics. PLoS Comput Biol 2019;15:e1006938. [PMID: 31469828 DOI: 10.1371/journal.pcbi.1006938] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
20 Ghali MGZ, Beshay S. Role of fast inhibitory synaptic transmission in neonatal respiratory rhythmogenesis and pattern formation. Mol Cell Neurosci 2019;100:103400. [PMID: 31472222 DOI: 10.1016/j.mcn.2019.103400] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
21 Rubin JE, Smith JC. Robustness of respiratory rhythm generation across dynamic regimes. PLoS Comput Biol 2019;15:e1006860. [PMID: 31361738 DOI: 10.1371/journal.pcbi.1006860] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
22 Dhingra RR, Furuya WI, Bautista TG, Dick TE, Galán RF, Dutschmann M. Increasing Local Excitability of Brainstem Respiratory Nuclei Reveals a Distributed Network Underlying Respiratory Motor Pattern Formation. Front Physiol 2019;10:887. [PMID: 31396094 DOI: 10.3389/fphys.2019.00887] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
23 Ben-Tal A, Wang Y, Leite MCA. The logic behind neural control of breathing pattern. Sci Rep 2019;9:9078. [PMID: 31235701 DOI: 10.1038/s41598-019-45011-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
24 Dhingra R, Kola G, Lewis S, Dutschmann M. Thoracic sympathetic chain stimulation modulates and entrains the respiratory pattern. Autonomic Neuroscience 2019;218:16-24. [DOI: 10.1016/j.autneu.2019.01.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Wittman S, Abdala AP, Rubin JE. Reduced computational modelling of Kölliker-Fuse contributions to breathing patterns in Rett syndrome. J Physiol 2019;597:2651-72. [PMID: 30908648 DOI: 10.1113/JP277592] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Phillips RS, John TT, Koizumi H, Molkov YI, Smith JC. Biophysical mechanisms in the mammalian respiratory oscillator re-examined with a new data-driven computational model. Elife 2019;8:e41555. [PMID: 30907727 DOI: 10.7554/eLife.41555] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
27 Ha NT, Dougherty KJ. Spinal Shox2 interneuron interconnectivity related to function and development. Elife 2018;7:e42519. [PMID: 30596374 DOI: 10.7554/eLife.42519] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
28 Fortuna MG, Kügler S, Hülsmann S. Probing the function of glycinergic neurons in the mouse respiratory network using optogenetics. Respir Physiol Neurobiol 2019;265:141-52. [PMID: 30395936 DOI: 10.1016/j.resp.2018.10.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]