BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chen YC, Douville C, Wang C, Niknafs N, Yeo G, Beleva-Guthrie V, Carter H, Stenson PD, Cooper DN, Li B, Mooney S, Karchin R. A probabilistic model to predict clinical phenotypic traits from genome sequencing. PLoS Comput Biol 2014;10:e1003825. [PMID: 25188385 DOI: 10.1371/journal.pcbi.1003825] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
Number Citing Articles
1 Tang H, Thomas PD. Tools for Predicting the Functional Impact of Nonsynonymous Genetic Variation. Genetics 2016;203:635-47. [PMID: 27270698 DOI: 10.1534/genetics.116.190033] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 12.0] [Reference Citation Analysis]
2 Groza T, Köhler S, Moldenhauer D, Vasilevsky N, Baynam G, Zemojtel T, Schriml LM, Kibbe WA, Schofield PN, Beck T, Vasant D, Brookes AJ, Zankl A, Washington NL, Mungall CJ, Lewis SE, Haendel MA, Parkinson H, Robinson PN. The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease. Am J Hum Genet 2015;97:111-24. [PMID: 26119816 DOI: 10.1016/j.ajhg.2015.05.020] [Cited by in Crossref: 133] [Cited by in F6Publishing: 100] [Article Influence: 19.0] [Reference Citation Analysis]
3 Cai B, Li B, Kiga N, Thusberg J, Bergquist T, Chen YC, Niknafs N, Carter H, Tokheim C, Beleva-Guthrie V, Douville C, Bhattacharya R, Yeo HTG, Fan J, Sengupta S, Kim D, Cline M, Turner T, Diekhans M, Zaucha J, Pal LR, Cao C, Yu CH, Yin Y, Carraro M, Giollo M, Ferrari C, Leonardi E, Tosatto SCE, Bobe J, Ball M, Hoskins RA, Repo S, Church G, Brenner SE, Moult J, Gough J, Stanke M, Karchin R, Mooney SD. Matching phenotypes to whole genomes: Lessons learned from four iterations of the personal genome project community challenges. Hum Mutat 2017;38:1266-76. [PMID: 28544481 DOI: 10.1002/humu.23265] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
4 Islam MM, Wang Y, Hu P. Deep Learning Models for Predicting Phenotypic Traits and Diseases from Omics Data. In: Aceves-fernandez MA, editor. Artificial Intelligence - Emerging Trends and Applications. InTech; 2018. [DOI: 10.5772/intechopen.75311] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
5 Saez-Rodriguez J, Costello JC, Friend SH, Kellen MR, Mangravite L, Meyer P, Norman T, Stolovitzky G. Crowdsourcing biomedical research: leveraging communities as innovation engines. Nat Rev Genet 2016;17:470-86. [PMID: 27418159 DOI: 10.1038/nrg.2016.69] [Cited by in Crossref: 107] [Cited by in F6Publishing: 73] [Article Influence: 21.4] [Reference Citation Analysis]
6 Kulmanov M, Hoehndorf R. DeepPheno: Predicting single gene loss-of-function phenotypes using an ontology-aware hierarchical classifier. PLoS Comput Biol 2020;16:e1008453. [PMID: 33206638 DOI: 10.1371/journal.pcbi.1008453] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]