BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Anderson TM, Ramirez JM. Respiratory rhythm generation: triple oscillator hypothesis. F1000Res 2017;6:139. [PMID: 28299192 DOI: 10.12688/f1000research.10193.1] [Cited by in Crossref: 45] [Cited by in F6Publishing: 44] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Huff A, Karlen-amarante M, Pitts T, Ramirez JM. Optogenetic stimulation of pre–Bötzinger complex reveals novel circuit interactions in swallowing–breathing coordination. Proc Natl Acad Sci U S A 2022;119:e2121095119. [DOI: 10.1073/pnas.2121095119] [Reference Citation Analysis]
2 Burgraff NJ, Phillips RS, Severs LJ, Bush NE, Baertsch NA, Ramirez JM. Inspiratory rhythm generation is stabilized by Ih. J Neurophysiol 2022;128:181-96. [PMID: 35675444 DOI: 10.1152/jn.00150.2022] [Reference Citation Analysis]
3 Summ O, Hassanpour N, Mathys C, Groß M. Disordered breathing in severe cerebral illness - towards a conceptual framework. Respir Physiol Neurobiol 2022;:103869. [PMID: 35181538 DOI: 10.1016/j.resp.2022.103869] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Aquino YC, Cabral LM, Miranda NC, Naccarato MC, Falquetto B, Moreira TS, Takakura AC. Respiratory disorders of Parkinson's disease. J Neurophysiol 2022;127:1-15. [PMID: 34817281 DOI: 10.1152/jn.00363.2021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Bordoni B, Escher AR. Functional evaluation of the diaphragm with a noninvasive test. J Osteopath Med 2021;121:835-42. [PMID: 34523291 DOI: 10.1515/jom-2021-0101] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Milsom WK, Kinkead R, Hedrick MS, Gilmour K, Perry S, Gargaglioni L, Wang T. Evolution of vertebrate respiratory central rhythm generators. Respir Physiol Neurobiol 2022;295:103781. [PMID: 34481078 DOI: 10.1016/j.resp.2021.103781] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
7 Daniel Gómez C, Rasmussen CM, Rekling JC. GABAergic Inhibition of Presynaptic Ca2+ Transients in Respiratory PreBötzinger Neurons in Organotypic Slice Cultures. eNeuro 2021;8:ENEURO. [PMID: 34380658 DOI: 10.1523/ENEURO.0154-21.2021] [Reference Citation Analysis]
8 Koronfel LM, Kanning KC, Alcos A, Henderson CE, Brownstone RM. Elimination of glutamatergic transmission from Hb9 interneurons does not impact treadmill locomotion. Sci Rep 2021;11:16008. [PMID: 34362940 DOI: 10.1038/s41598-021-95143-y] [Reference Citation Analysis]
9 Mutolo D, Bongianni F, Pantaleo T, Cinelli E. The lamprey respiratory network: Some evolutionary aspects. Respir Physiol Neurobiol 2021;294:103766. [PMID: 34329767 DOI: 10.1016/j.resp.2021.103766] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Olivares MJ, Flores A, von Bernhardi R, Eugenín J. Astrocytic contribution to glutamate-related central respiratory chemoreception in vertebrates. Respir Physiol Neurobiol 2021;294:103744. [PMID: 34302992 DOI: 10.1016/j.resp.2021.103744] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Cinelli E, Mutolo D, Pantaleo T, Bongianni F. Neural mechanisms underlying respiratory regulation within the preBötzinger complex of the rabbit. Respir Physiol Neurobiol 2021;293:103736. [PMID: 34224867 DOI: 10.1016/j.resp.2021.103736] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Romano V, Reddington AL, Cazzanelli S, Mazza R, Ma Y, Strydis C, Negrello M, Bosman LWJ, De Zeeuw CI. Functional Convergence of Autonomic and Sensorimotor Processing in the Lateral Cerebellum. Cell Rep 2020;32:107867. [PMID: 32640232 DOI: 10.1016/j.celrep.2020.107867] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
13 Ramirez JM, Burgraff NJ, Wei AD, Baertsch NA, Varga AG, Baghdoyan HA, Lydic R, Morris KF, Bolser DC, Levitt ES. Neuronal mechanisms underlying opioid-induced respiratory depression: our current understanding. J Neurophysiol 2021;125:1899-919. [PMID: 33826874 DOI: 10.1152/jn.00017.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
14 Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2021;125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
15 Dhingra RR, Furuya WI, Dick TE, Dutschmann M. Response to: The post-inspiratory complex (PiCo), what is the evidence? J Physiol 2021;599:361-2. [PMID: 33197048 DOI: 10.1113/JP280958] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Hülsmann S. The post‐inspiratory complex (PiCo), what is the evidence? J Physiol 2021;599:357-9. [DOI: 10.1113/jp280492] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Souza GMPR, Stornetta RL, Stornetta DS, Abbott SBG, Guyenet PG. Differential Contribution of the Retrotrapezoid Nucleus and C1 Neurons to Active Expiration and Arousal in Rats. J Neurosci 2020;40:8683-97. [PMID: 32973046 DOI: 10.1523/JNEUROSCI.1006-20.2020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
18 Cinelli E, Bongianni F, Pantaleo T, Mutolo D. Activation of μ-opioid receptors differentially affects the preBötzinger Complex and neighbouring regions of the respiratory network in the adult rabbit. Respiratory Physiology & Neurobiology 2020;280:103482. [DOI: 10.1016/j.resp.2020.103482] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
19 Biancardi V, Saini J, Pageni A, Prashaad M. H, Funk GD, Pagliardini S. Mapping of the excitatory, inhibitory, and modulatory afferent projections to the anatomically defined active expiratory oscillator in adult male rats. J Comp Neurol 2021;529:853-84. [DOI: 10.1002/cne.24984] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
20 Flor KC, Barnett WH, Karlen-Amarante M, Molkov YI, Zoccal DB. Inhibitory control of active expiration by the Bötzinger complex in rats. J Physiol 2020;598:4969-94. [PMID: 32621515 DOI: 10.1113/JP280243] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
21 Ghali MGZ. Retracted: Control of hypoglossal pre‐inspiratory discharge. Exp Physiol 2020;105:1232-55. [DOI: 10.1113/ep087329] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Beltrán-Castillo S, Olivares MJ, Ochoa M, Barria J, Chacón M, von Bernhardi R, Eugenín J. d-serine regulation of the timing and architecture of the inspiratory burst in neonatal mice. Biochim Biophys Acta Proteins Proteom 2020;1868:140484. [PMID: 32652125 DOI: 10.1016/j.bbapap.2020.140484] [Reference Citation Analysis]
23 Gauda EB, Conde S, Bassi M, Zoccal DB, Almeida Colombari DS, Colombari E, Despotovic N. Leptin: Master Regulator of Biological Functions that Affects Breathing. Compr Physiol 2020;10:1047-83. [PMID: 32941688 DOI: 10.1002/cphy.c190031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
24 Hasan SU, Lodha AK, Yusuf K, Dalgleish S. Physiological Basis of Neonatal Aerodigestive Difficulties in Chronic Lung Disease. Clin Perinatol 2020;47:277-99. [PMID: 32439112 DOI: 10.1016/j.clp.2020.03.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
25 George Zaki Ghali M. Midbrain control of breathing and blood pressure: The role of periaqueductal gray matter and mesencephalic collicular neuronal microcircuit oscillators. Eur J Neurosci 2020;52:3879-902. [PMID: 32227408 DOI: 10.1111/ejn.14727] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
26 Maric V, Ramanathan D, Mishra J. Respiratory regulation & interactions with neuro-cognitive circuitry. Neurosci Biobehav Rev 2020;112:95-106. [PMID: 32027875 DOI: 10.1016/j.neubiorev.2020.02.001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
27 Wei AD, Ramirez JM. Presynaptic Mechanisms and KCNQ Potassium Channels Modulate Opioid Depression of Respiratory Drive. Front Physiol 2019;10:1407. [PMID: 31824331 DOI: 10.3389/fphys.2019.01407] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
28 Jefferys JGR, Arafat MA, Irazoqui PP, Lovick TA. Brainstem activity, apnea, and death during seizures induced by intrahippocampal kainic acid in anaesthetized rats. Epilepsia 2019;60:2346-58. [DOI: 10.1111/epi.16374] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
29 Ghali MGZ, Beshay S. Role of fast inhibitory synaptic transmission in neonatal respiratory rhythmogenesis and pattern formation. Mol Cell Neurosci 2019;100:103400. [PMID: 31472222 DOI: 10.1016/j.mcn.2019.103400] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
30 Steuer I, Guertin PA. Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences. Rev Neurosci 2019;30:107-64. [PMID: 30543520 DOI: 10.1515/revneuro-2017-0102] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
31 Garcia AJ 3rd, Viemari JC, Khuu MA. Respiratory rhythm generation, hypoxia, and oxidative stress-Implications for development. Respir Physiol Neurobiol 2019;270:103259. [PMID: 31369874 DOI: 10.1016/j.resp.2019.103259] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
32 Golowasch J. Neuromodulation of central pattern generators and its role in the functional recovery of central pattern generator activity. J Neurophysiol 2019;122:300-15. [PMID: 31066614 DOI: 10.1152/jn.00784.2018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
33 Horcholle-Bossavit G, Quenet B. Neural network model of an amphibian ventilatory central pattern generator. J Comput Neurosci 2019;46:299-320. [PMID: 31119525 DOI: 10.1007/s10827-019-00718-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
34 Dhaibar H, Gautier NM, Chernyshev OY, Dominic P, Glasscock E. Cardiorespiratory profiling reveals primary breathing dysfunction in Kcna1-null mice: Implications for sudden unexpected death in epilepsy. Neurobiol Dis 2019;127:502-11. [PMID: 30974168 DOI: 10.1016/j.nbd.2019.04.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
35 Baertsch NA, Severs LJ, Anderson TM, Ramirez JM. A spatially dynamic network underlies the generation of inspiratory behaviors. Proc Natl Acad Sci U S A 2019;116:7493-502. [PMID: 30918122 DOI: 10.1073/pnas.1900523116] [Cited by in Crossref: 20] [Cited by in F6Publishing: 27] [Article Influence: 6.7] [Reference Citation Analysis]
36 Lima JD, Sobrinho CR, Falquetto B, Santos LK, Takakura AC, Mulkey DK, Moreira TS. Cholinergic neurons in the pedunculopontine tegmental nucleus modulate breathing in rats by direct projections to the retrotrapezoid nucleus. J Physiol 2019;597:1919-34. [PMID: 30724347 DOI: 10.1113/JP277617] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
37 Ramirez JM, Baertsch N. Defining the Rhythmogenic Elements of Mammalian Breathing. Physiology (Bethesda) 2018;33:302-16. [PMID: 30109823 DOI: 10.1152/physiol.00025.2018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 9.3] [Reference Citation Analysis]
38 Hülsmann S, Oke Y, Mesuret G, Latal AT, Fortuna MG, Niebert M, Hirrlinger J, Fischer J, Hammerschmidt K. The postnatal development of ultrasonic vocalization-associated breathing is altered in glycine transporter 2-deficient mice. J Physiol 2019;597:173-91. [PMID: 30296333 DOI: 10.1113/JP276976] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
39 Wu Y, Cui N, Xing H, Zhong W, Arrowood C, Johnson CM, Jiang C. Mecp2 Disruption in Rats Causes Reshaping in Firing Activity and Patterns of Brainstem Respiratory Neurons. Neuroscience 2019;397:107-15. [PMID: 30458221 DOI: 10.1016/j.neuroscience.2018.11.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
40 Hou L, Bellingham MC, Huang Y, Zhang P, Zhou X, Zhang M. Central inspiratory activity rhythmically activates synaptic currents of airway vagal preganglionic neurons in neonatal rats. Neurosci Lett 2019;694:231-7. [PMID: 30458215 DOI: 10.1016/j.neulet.2018.11.024] [Reference Citation Analysis]
41 Kopp-scheinpflug C, Sinclair JL, Linden JF. When Sound Stops: Offset Responses in the Auditory System. Trends in Neurosciences 2018;41:712-28. [DOI: 10.1016/j.tins.2018.08.009] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 9.8] [Reference Citation Analysis]
42 Ramirez JM, Severs LJ, Ramirez SC, Agosto-Marlin IM. Advances in cellular and integrative control of oxygen homeostasis within the central nervous system. J Physiol 2018;596:3043-65. [PMID: 29742297 DOI: 10.1113/JP275890] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
43 Bordoni B, Purgol S, Bizzarri A, Modica M, Morabito B. The Influence of Breathing on the Central Nervous System. Cureus 2018;10:e2724. [PMID: 30083485 DOI: 10.7759/cureus.2724] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
44 Ramirez JM, Baertsch NA. The Dynamic Basis of Respiratory Rhythm Generation: One Breath at a Time. Annu Rev Neurosci 2018;41:475-99. [PMID: 29709210 DOI: 10.1146/annurev-neuro-080317-061756] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 9.3] [Reference Citation Analysis]