BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kim K, Nguyen TD, Li S, Nguyen TA. SRSF3 recruits DROSHA to the basal junction of primary microRNAs. RNA 2018;24:892-8. [PMID: 29615481 DOI: 10.1261/rna.065862.118] [Cited by in Crossref: 50] [Cited by in F6Publishing: 50] [Article Influence: 12.5] [Reference Citation Analysis]
Number Citing Articles
1 Samad AFA, Kamaroddin MF. Innovative approaches in transforming microRNAs into therapeutic tools. WIREs RNA 2022. [DOI: 10.1002/wrna.1768] [Reference Citation Analysis]
2 Ruiz-Arroyo VM, Nam Y. Dynamic Protein-RNA recognition in primary MicroRNA processing. Curr Opin Struct Biol 2022;76:102442. [PMID: 36067707 DOI: 10.1016/j.sbi.2022.102442] [Reference Citation Analysis]
3 Jones AN, Walbrun A, Falleroni F, Rief M, Sattler M. Conformational effects of a cancer-linked mutation in pri-miR-30c RNA. J Mol Biol 2022;:167705. [PMID: 35760371 DOI: 10.1016/j.jmb.2022.167705] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Park S, Yang HD, Seo JW, Nam JW, Nam SW. hnRNPC induces isoform shifts in miR-21-5p leading to cancer development. Exp Mol Med 2022. [PMID: 35729324 DOI: 10.1038/s12276-022-00792-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Hecker M, Fitzner B, Putscher E, Schwartz M, Winkelmann A, Meister S, Dudesek A, Koczan D, Lorenz P, Boxberger N, Zettl UK. Implication of genetic variants in primary microRNA processing sites in the risk of multiple sclerosis. eBioMedicine 2022;80:104052. [DOI: 10.1016/j.ebiom.2022.104052] [Reference Citation Analysis]
6 Bofill-de Ros X, Hong Z, Birkenfeld B, Alamo-ortiz S, Yang A, Dai L, Gu S. Flexible pri-miRNA structures enable tunable production of 5’ isomiRs. RNA Biology 2022;19:279-89. [DOI: 10.1080/15476286.2022.2025680] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Jungers CF, Djuranovic S. Modulation of miRISC-Mediated Gene Silencing in Eukaryotes. Front Mol Biosci 2022;9:832916. [DOI: 10.3389/fmolb.2022.832916] [Reference Citation Analysis]
8 Campos-melo D, Hawley ZC, Mclellan C, Strong MJ. MicroRNA turnover and nuclear function. MicroRNA 2022. [DOI: 10.1016/b978-0-323-89774-7.00026-1] [Reference Citation Analysis]
9 Slišković I, Eich H, Müller-McNicoll M. Exploring the multifunctionality of SR proteins. Biochem Soc Trans 2021:BST20210325. [PMID: 34940860 DOI: 10.1042/BST20210325] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
10 Xiong J, Chen Y, Wang W, Sun J. Biological function and molecular mechanism of SRSF3 in cancer and beyond. Oncol Lett 2022;23:21. [PMID: 34858525 DOI: 10.3892/ol.2021.13139] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Nguyen TL, Nguyen TD, Nguyen TA. The conserved single-cleavage mechanism of animal DROSHA enzymes. Commun Biol 2021;4:1332. [PMID: 34824450 DOI: 10.1038/s42003-021-02860-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Soler M, Davalos V, Sánchez-Castillo A, Mora-Martinez C, Setién F, Siqueira E, Castro de Moura M, Esteller M, Guil S. The transcribed ultraconserved region uc.160+ enhances processing and A-to-I editing of the miR-376 cluster: hypermethylation improves glioma prognosis. Mol Oncol 2021. [PMID: 34665919 DOI: 10.1002/1878-0261.13121] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Wong ACH, Rasko JEJ. Splice and Dice: Intronic microRNAs, Splicing and Cancer. Biomedicines 2021;9:1268. [PMID: 34572454 DOI: 10.3390/biomedicines9091268] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
14 Yoshida T, Asano Y, Ui-Tei K. Modulation of MicroRNA Processing by Dicer via Its Associated dsRNA Binding Proteins. Noncoding RNA 2021;7:57. [PMID: 34564319 DOI: 10.3390/ncrna7030057] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Bofill-de Ros X, Hong Z, Birkenfeld B, Alamo-ortiz S, Yang A, Dai L, Gu S. Flexible pri-miRNA structures enable tunable production of 5’ isomiRs.. [DOI: 10.1101/2021.08.18.456839] [Reference Citation Analysis]
16 Kim K, Baek SC, Lee YY, Bastiaanssen C, Kim J, Kim H, Kim VN. A quantitative map of human primary microRNA processing sites. Mol Cell 2021:S1097-2765(21)00545-1. [PMID: 34320405 DOI: 10.1016/j.molcel.2021.07.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
17 Mehterov N, Kazakova M, Sbirkov Y, Vladimirov B, Belev N, Yaneva G, Todorova K, Hayrabedyan S, Sarafian V. Alternative RNA Splicing-The Trojan Horse of Cancer Cells in Chemotherapy. Genes (Basel) 2021;12:1085. [PMID: 34356101 DOI: 10.3390/genes12071085] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Wang H, Jiang Y. SRp20: A potential therapeutic target for human tumors. Pathol Res Pract 2021;224:153444. [PMID: 34126370 DOI: 10.1016/j.prp.2021.153444] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Reinsborough CW, Ipas H, Abell NS, Gouws EB, Williams JP, Mercado M, Van Den Berg C, Xhemalçe B. BCDIN3D RNA methyltransferase stimulates Aldolase C expression and glycolysis through let-7 microRNA in breast cancer cells. Oncogene 2021;40:2395-406. [PMID: 33664453 DOI: 10.1038/s41388-021-01702-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
20 Li S, Le TN, Nguyen TD, Trinh TA, Nguyen TA. Bulges control pri-miRNA processing in a position and strand-dependent manner. RNA Biol 2021;18:1716-26. [PMID: 33382955 DOI: 10.1080/15476286.2020.1868139] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
21 Kotowska-Zimmer A, Pewinska M, Olejniczak M. Artificial miRNAs as therapeutic tools: Challenges and opportunities. Wiley Interdiscip Rev RNA 2021;12:e1640. [PMID: 33386705 DOI: 10.1002/wrna.1640] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
22 Kwon SC, Jang H, Shen S, Baek SC, Kim K, Yang J, Kim J, Kim JS, Wang S, Shi Y, Li F, Kim VN. ERH facilitates microRNA maturation through the interaction with the N-terminus of DGCR8. Nucleic Acids Res 2020;48:11097-112. [PMID: 33035348 DOI: 10.1093/nar/gkaa827] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
23 McLaurin DM, Logan MK, Lett KE, Hebert MD. Molecular determinants that govern scaRNA processing by Drosha/DGCR8. Biol Open 2020;9:bio054619. [PMID: 33037012 DOI: 10.1242/bio.054619] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Le CT, Nguyen TL, Nguyen TD, Nguyen TA. Human disease-associated single nucleotide polymorphism changes the orientation of DROSHA on pri-mir-146a. RNA 2020;26:1777-86. [PMID: 32994184 DOI: 10.1261/rna.077487.120] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
25 Zhou Z, Gong Q, Lin Z, Wang Y, Li M, Wang L, Ding H, Li P. Emerging Roles of SRSF3 as a Therapeutic Target for Cancer. Front Oncol 2020;10:577636. [PMID: 33072610 DOI: 10.3389/fonc.2020.577636] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
26 Ngo TD, Partin AC, Nam Y. RNA Specificity and Autoregulation of DDX17, a Modulator of MicroRNA Biogenesis. Cell Rep 2019;29:4024-4035.e5. [PMID: 31851931 DOI: 10.1016/j.celrep.2019.11.059] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
27 Giannocco G, Kizys MML, Maciel RM, de Souza JS. Thyroid hormone, gene expression, and Central Nervous System: Where we are. Semin Cell Dev Biol 2021;114:47-56. [PMID: 32980238 DOI: 10.1016/j.semcdb.2020.09.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
28 Sun Q, Song YJ, Prasanth KV. One locus with two roles: microRNA-independent functions of microRNA-host-gene locus-encoded long noncoding RNAs. Wiley Interdiscip Rev RNA 2021;12:e1625. [PMID: 32945142 DOI: 10.1002/wrna.1625] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
29 Vorozheykin PS, Titov II. Erratum to: How Animal miRNAs Structure Influences Their Biogenesis. Russ J Genet 2020;56:1012-1024. [DOI: 10.1134/s1022795420220019] [Reference Citation Analysis]
30 Dang TL, Le CT, Le MN, Nguyen TD, Nguyen TL, Bao S, Li S, Nguyen TA. Select amino acids in DGCR8 are essential for the UGU-pri-miRNA interaction and processing. Commun Biol 2020;3:344. [PMID: 32620823 DOI: 10.1038/s42003-020-1071-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
31 More DA, Kumar A. SRSF3: Newly discovered functions and roles in human health and diseases. Eur J Cell Biol 2020;99:151099. [PMID: 32800280 DOI: 10.1016/j.ejcb.2020.151099] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
32 Nguyen TL, Nguyen TD, Bao S, Li S, Nguyen TA. The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human Microprocessor. Nucleic Acids Res 2020;48:2579-93. [PMID: 31956890 DOI: 10.1093/nar/gkaa018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
33 Kwon SC, Jang H, Yang J, Kim J, Baek SC, Kim J, Kim VN. ERH as a component of the Microprocessor facilitates the maturation of suboptimal microRNAs.. [DOI: 10.1101/2020.05.13.093278] [Reference Citation Analysis]
34 Dargyte M, Philipp J, Palka CD, Stone MD, Sanford JR. Splicing factor SRSF1 expands the regulatory logic of microRNA expression.. [DOI: 10.1101/2020.05.12.092270] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
35 Li S, Nguyen TD, Nguyen TL, Nguyen TA. Mismatched and wobble base pairs govern primary microRNA processing by human Microprocessor. Nat Commun 2020;11:1926. [PMID: 32317642 DOI: 10.1038/s41467-020-15674-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 9.0] [Reference Citation Analysis]
36 Vorozheykin PS, Titov II. How miRNA Structure of Animals Influences Their Biogenesis. Russ J Genet 2020;56:17-29. [DOI: 10.1134/s1022795420010135] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Shen K, Cao Z, Zhu R, You L, Zhang T. The dual functional role of MicroRNA-18a (miR-18a) in cancer development. Clin Transl Med 2019;8:32. [PMID: 31873828 DOI: 10.1186/s40169-019-0250-9] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
38 Mármol-Sánchez E, Cirera S, Quintanilla R, Pla A, Amills M. Discovery and annotation of novel microRNAs in the porcine genome by using a semi-supervised transductive learning approach. Genomics 2020;112:2107-18. [PMID: 31816430 DOI: 10.1016/j.ygeno.2019.12.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
39 Liu N, Wang ZZ, Zhao M, Zhang Y, Chen NH. Role of non-coding RNA in the pathogenesis of depression. Gene 2020;735:144276. [PMID: 31816363 DOI: 10.1016/j.gene.2019.144276] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
40 Sun Y, Yan L, Guo J, Shao J, Jia R. Downregulation of SRSF3 by antisense oligonucleotides sensitizes oral squamous cell carcinoma and breast cancer cells to paclitaxel treatment. Cancer Chemother Pharmacol 2019;84:1133-43. [PMID: 31515668 DOI: 10.1007/s00280-019-03945-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
41 Kumar D, Das M, Sauceda C, Ellies LG, Kuo K, Parwal P, Kaur M, Jih L, Bandyopadhyay GK, Burton D, Loomba R, Osborn O, Webster NJ. Degradation of splicing factor SRSF3 contributes to progressive liver disease. J Clin Invest 2019;129:4477-91. [PMID: 31393851 DOI: 10.1172/JCI127374] [Cited by in Crossref: 38] [Cited by in F6Publishing: 42] [Article Influence: 12.7] [Reference Citation Analysis]
42 Ratnadiwakara M, Engel R, Jarde T, Mcmurrick PJ, Abud HE, Änkö M. SRSF3 confers selective processing of miR-17-92 cluster to promote tumorigenic properties in colorectal cancer.. [DOI: 10.1101/667295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Galka-Marciniak P, Urbanek-Trzeciak MO, Nawrocka PM, Dutkiewicz A, Giefing M, Lewandowska MA, Kozlowski P. Somatic Mutations in miRNA Genes in Lung Cancer-Potential Functional Consequences of Non-Coding Sequence Variants. Cancers (Basel) 2019;11:E793. [PMID: 31181801 DOI: 10.3390/cancers11060793] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 9.0] [Reference Citation Analysis]
44 Galka-marciniak P, Urbanek-trzeciak MO, Nawrocka PM, Dutkiewicz A, Giefing M, Lewandowska MA, Kozlowski P. Somatic mutations in miRNA genes in lung cancer – potential functional consequences of non-coding sequence variants.. [DOI: 10.1101/579011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
45 Kwon SC, Baek SC, Choi Y, Yang J, Lee Y, Woo J, Kim VN. Molecular Basis for the Single-Nucleotide Precision of Primary microRNA Processing. Molecular Cell 2019;73:505-518.e5. [DOI: 10.1016/j.molcel.2018.11.005] [Cited by in Crossref: 43] [Cited by in F6Publishing: 46] [Article Influence: 14.3] [Reference Citation Analysis]
46 Zhou L, Guo J, Jia R. Oncogene SRSF3 suppresses autophagy via inhibiting BECN1 expression. Biochem Biophys Res Commun 2019;509:966-72. [PMID: 30654935 DOI: 10.1016/j.bbrc.2019.01.048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
47 Urbanek-Trzeciak MO, Jaworska E, Krzyzosiak WJ. miRNAmotif-A Tool for the Prediction of Pre-miRNA⁻Protein Interactions. Int J Mol Sci 2018;19:E4075. [PMID: 30562930 DOI: 10.3390/ijms19124075] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
48 Nguyen HM, Nguyen TD, Nguyen TL, Nguyen TA. Orientation of Human Microprocessor on Primary MicroRNAs. Biochemistry 2019;58:189-98. [DOI: 10.1021/acs.biochem.8b00944] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
49 Michlewski G, Cáceres JF. Post-transcriptional control of miRNA biogenesis. RNA 2019;25:1-16. [PMID: 30333195 DOI: 10.1261/rna.068692.118] [Cited by in Crossref: 262] [Cited by in F6Publishing: 272] [Article Influence: 65.5] [Reference Citation Analysis]
50 Kooshapur H, Choudhury NR, Simon B, Mühlbauer M, Jussupow A, Fernandez N, Jones AN, Dallmann A, Gabel F, Camilloni C, Michlewski G, Caceres JF, Sattler M. Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1. Nat Commun 2018;9:2479. [PMID: 29946118 DOI: 10.1038/s41467-018-04871-9] [Cited by in Crossref: 53] [Cited by in F6Publishing: 61] [Article Influence: 13.3] [Reference Citation Analysis]