BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Grounds MD, Terrill JR, Al-Mshhdani BA, Duong MN, Radley-Crabb HG, Arthur PG. Biomarkers for Duchenne muscular dystrophy: myonecrosis, inflammation and oxidative stress. Dis Model Mech 2020;13:dmm043638. [PMID: 32224496 DOI: 10.1242/dmm.043638] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 13.7] [Reference Citation Analysis]
Number Citing Articles
1 Terrill JR, Huchet C, Le Guiner C, Lafoux A, Caudal D, Tulangekar A, Bryson-Richardson RJ, Sztal TE, Grounds MD, Arthur PG. Muscle Pathology in Dystrophic Rats and Zebrafish Is Unresponsive to Taurine Treatment, Compared to the mdx Mouse Model for Duchenne Muscular Dystrophy. Metabolites 2023;13. [PMID: 36837851 DOI: 10.3390/metabo13020232] [Reference Citation Analysis]
2 Muraine L, Bensalah M, Butler-Browne G, Bigot A, Trollet C, Mouly V, Negroni E. Update on anti-fibrotic pharmacotherapies in skeletal muscle disease. Curr Opin Pharmacol 2023;68:102332. [PMID: 36566666 DOI: 10.1016/j.coph.2022.102332] [Reference Citation Analysis]
3 Sharma A, Sane H, Gokulchandran N, Paranjape A, Shaikh Z, Km A, Badhe P. Cell Therapy for Muscular Dystrophy. Advances in Muscular Dystrophy Research - From Cellular and Molecular Basis to Therapies [Working Title] 2023. [DOI: 10.5772/intechopen.108600] [Reference Citation Analysis]
4 Bencze M. Mechanisms of Myofibre Death in Muscular Dystrophies: The Emergence of the Regulated Forms of Necrosis in Myology. Int J Mol Sci 2022;24. [PMID: 36613804 DOI: 10.3390/ijms24010362] [Reference Citation Analysis]
5 Dubuisson N, Versele R, Planchon C, Selvais CM, Noel L, Abou-Samra M, Davis-López de Carrizosa MA. Histological Methods to Assess Skeletal Muscle Degeneration and Regeneration in Duchenne Muscular Dystrophy. Int J Mol Sci 2022;23. [PMID: 36555721 DOI: 10.3390/ijms232416080] [Reference Citation Analysis]
6 Iwasaki T, Terrill JR, Kawarai K, Miyata Y, Tagami T, Maeda N, Hasegawa Y, Watanabe T, Grounds MD, Arthur PG. The location of protein oxidation in dystrophic skeletal muscle from the mdx mouse model of Duchenne muscular dystrophy. Acta Histochemica 2022;124:151959. [DOI: 10.1016/j.acthis.2022.151959] [Reference Citation Analysis]
7 Gargan S, Dowling P, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic Identification of Markers of Membrane Repair, Regeneration and Fibrosis in the Aged and Dystrophic Diaphragm. Life 2022;12:1679. [DOI: 10.3390/life12111679] [Reference Citation Analysis]
8 Kracht KD, Eichorn NL, Berlau DJ. Perspectives on the advances in the pharmacotherapeutic management of Duchenne muscular dystrophy. Expert Opin Pharmacother 2022. [PMID: 36168943 DOI: 10.1080/14656566.2022.2130246] [Reference Citation Analysis]
9 Timpani CA, Kourakis S, Debruin DA, Campelj DG, Pompeani N, Dargahi N, Bautista AP, Bagaric RM, Ritenis EJ, Sahakian L, Hafner P, Arthur PG, Terrill JR, Apostolopoulos V, de Haan JB, Guven N, Fischer D, Rybalka E. Dimethyl fumarate modulates the Duchenne muscular dystrophy disease program following short-term treatment in mdx mice.. [DOI: 10.1101/2022.09.15.508124] [Reference Citation Analysis]
10 Riddell DO, Hildyard JCW, Harron RCM, Wells DJ, Piercy RJ. Longitudinal assessment of blood-borne musculoskeletal disease biomarkers in the DE50-MD dog model of Duchenne muscular dystrophy. Wellcome Open Res 2021;6:354. [DOI: 10.12688/wellcomeopenres.17398.2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Mizobuti DS, da Rocha GL, da Silva HNM, Covatti C, de Lourenço CC, Pereira ECL, Salvador MJ, Minatel E. Antioxidant effects of bis-indole alkaloid indigo and related signaling pathways in the experimental model of Duchenne muscular dystrophy. Cell Stress Chaperones 2022;27:417-29. [PMID: 35687225 DOI: 10.1007/s12192-022-01282-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Samani A, Hightower RM, Reid AL, English KG, Lopez MA, Doyle JS, Conklin MJ, Schneider DA, Bamman MM, Widrick JJ, Crossman DK, Xie M, Jee D, Lai EC, Alexander MS. miR-486 is essential for muscle function and suppresses a dystrophic transcriptome. Life Sci Alliance 2022;5. [PMID: 35512829 DOI: 10.26508/lsa.202101215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Bevere M, Morabito C, Mariggiò MA, Guarnieri S. The Oxidative Balance Orchestrates the Main Keystones of the Functional Activity of Cardiomyocytes. Oxid Med Cell Longev 2022;2022:7714542. [PMID: 35047109 DOI: 10.1155/2022/7714542] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Rehman MYA, Briedé JJ, van Herwijnen M, Krauskopf J, Jennen DGJ, Malik RN, Kleinjans JCS. Integrating SNPs-based genetic risk factor with blood epigenomic response of differentially arsenic-exposed rural subjects reveals disease-associated signaling pathways. Environ Pollut 2022;292:118279. [PMID: 34619179 DOI: 10.1016/j.envpol.2021.118279] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
15 Kaziród K, Myszka M, Dulak J, Łoboda A. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cell Mol Life Sci 2022;79:608. [PMID: 36441348 DOI: 10.1007/s00018-022-04636-0] [Reference Citation Analysis]
16 Selva-O'Callaghan A, Trallero-Araguás E, Milisenda JC, Grau-Junyent JM. Differential diagnosis of necrotizing myopathy. Curr Opin Rheumatol 2021;33:544-53. [PMID: 34482348 DOI: 10.1097/BOR.0000000000000836] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
17 Tulangekar A, Sztal TE. Inflammation in Duchenne Muscular Dystrophy-Exploring the Role of Neutrophils in Muscle Damage and Regeneration. Biomedicines 2021;9:1366. [PMID: 34680483 DOI: 10.3390/biomedicines9101366] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
18 Belinskaia DA, Voronina PA, Shmurak VI, Jenkins RO, Goncharov NV. Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 2021;22:10318. [PMID: 34638659 DOI: 10.3390/ijms221910318] [Cited by in Crossref: 23] [Cited by in F6Publishing: 26] [Article Influence: 11.5] [Reference Citation Analysis]
19 De Simone G, di Masi A, Ascenzi P. Serum Albumin: A Multifaced Enzyme. Int J Mol Sci 2021;22:10086. [PMID: 34576249 DOI: 10.3390/ijms221810086] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
20 Marine T, Marielle S, Graziella M, Fabio RMV. Macrophages in Skeletal Muscle Dystrophies, An Entangled Partner. J Neuromuscul Dis 2021. [PMID: 34542080 DOI: 10.3233/JND-210737] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
21 Banerji CRS, Henderson D, Tawil RN, Zammit PS. Skeletal muscle regeneration in facioscapulohumeral muscular dystrophy is correlated with pathological severity. Hum Mol Genet 2020;29:2746-60. [PMID: 32744322 DOI: 10.1093/hmg/ddaa164] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
22 Lai X, Chen J. C-X-C motif chemokine ligand 12: a potential therapeutic target in Duchenne muscular dystrophy. Bioengineered 2021;12:5428-39. [PMID: 34424816 DOI: 10.1080/21655979.2021.1967029] [Reference Citation Analysis]
23 Fujikura Y, Sugihara H, Hatakeyama M, Oishi K, Yamanouchi K. Ketogenic diet with medium-chain triglycerides restores skeletal muscle function and pathology in a rat model of Duchenne muscular dystrophy. FASEB J 2021;35:e21861. [PMID: 34416029 DOI: 10.1096/fj.202100629R] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
24 Ogundele M, Zhang JS, Goswami MV, Barbieri ML, Dang UJ, Novak JS, Hoffman EP, Nagaraju K, Cinrg-Dnhs Investigators, Hathout Y. Validation of Chemokine Biomarkers in Duchenne Muscular Dystrophy. Life (Basel) 2021;11:827. [PMID: 34440571 DOI: 10.3390/life11080827] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Ellwood RA, Hewitt JE, Torregrossa R, Philp AM, Hardee JP, Hughes S, van de Klashorst D, Gharahdaghi N, Anupom T, Slade L, Deane CS, Cooke M, Etheridge T, Piasecki M, Antebi A, Lynch GS, Philp A, Vanapalli SA, Whiteman M, Szewczyk NJ. Mitochondrial hydrogen sulfide supplementation improves health in the C. elegans Duchenne muscular dystrophy model. Proc Natl Acad Sci U S A 2021;118:e2018342118. [PMID: 33627403 DOI: 10.1073/pnas.2018342118] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
26 Al-Mshhdani BA, Grounds MD, Arthur PG, Terrill JR. A Blood Biomarker for Duchenne Muscular Dystrophy Shows That Oxidation State of Albumin Correlates with Protein Oxidation and Damage in Mdx Muscle. Antioxidants (Basel) 2021;10:1241. [PMID: 34439489 DOI: 10.3390/antiox10081241] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
27 Ben Larbi S, Saclier M, Fessard A, Juban G, Chazaud B. Histological Analysis of Tibialis Anterior Muscle of DMDmdx4Cv Mice from 1 to 24 Months. J Neuromuscul Dis 2021;8:513-24. [PMID: 33843691 DOI: 10.3233/JND-200562] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
28 Martins SG, Zilhão R, Thorsteinsdóttir S, Carlos AR. Linking Oxidative Stress and DNA Damage to Changes in the Expression of Extracellular Matrix Components. Front Genet 2021;12:673002. [PMID: 34394183 DOI: 10.3389/fgene.2021.673002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
29 Campelj DG, Goodman CA, Rybalka E. Chemotherapy-Induced Myopathy: The Dark Side of the Cachexia Sphere. Cancers (Basel) 2021;13:3615. [PMID: 34298829 DOI: 10.3390/cancers13143615] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
30 Giovarelli M, Zecchini S, Catarinella G, Moscheni C, Sartori P, Barbieri C, Roux-Biejat P, Napoli A, Vantaggiato C, Cervia D, Perrotta C, Clementi E, Latella L, De Palma C. Givinostat as metabolic enhancer reverting mitochondrial biogenesis deficit in Duchenne Muscular Dystrophy. Pharmacol Res 2021;170:105751. [PMID: 34197911 DOI: 10.1016/j.phrs.2021.105751] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
31 Banerji CRS, Zammit PS. Pathomechanisms and biomarkers in facioscapulohumeral muscular dystrophy: roles of DUX4 and PAX7. EMBO Mol Med 2021;13:e13695. [PMID: 34151531 DOI: 10.15252/emmm.202013695] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
32 Hightower RM, Samani A, Reid AL, English KG, Lopez MA, Doyle JS, Conklin MJ, Schneider DA, Bamman MM, Widrick JJ, Crossman DK, Xie M, Jee D, Lai EC, Alexander MS. miR-486 is an epigenetic modulator of Duchenne muscular dystrophy pathologies.. [DOI: 10.1101/2021.06.14.448387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Mosca N, Petrillo S, Bortolani S, Monforte M, Ricci E, Piemonte F, Tasca G. Redox Homeostasis in Muscular Dystrophies. Cells 2021;10:1364. [PMID: 34205993 DOI: 10.3390/cells10061364] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
34 Michetti F, Di Sante G, Clementi ME, Sampaolese B, Casalbore P, Volonté C, Romano Spica V, Parnigotto PP, Di Liddo R, Amadio S, Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci Biobehav Rev 2021;127:446-58. [PMID: 33971224 DOI: 10.1016/j.neubiorev.2021.04.035] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
35 Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021;12:673404. [PMID: 33959042 DOI: 10.3389/fphys.2021.673404] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 14.0] [Reference Citation Analysis]
36 Frinchi M, Morici G, Mudó G, Bonsignore MR, Di Liberto V. Beneficial Role of Exercise in the Modulation of mdx Muscle Plastic Remodeling and Oxidative Stress. Antioxidants (Basel) 2021;10:558. [PMID: 33916762 DOI: 10.3390/antiox10040558] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
37 Dowling P, Gargan S, Murphy S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. The Dystrophin Node as Integrator of Cytoskeletal Organization, Lateral Force Transmission, Fiber Stability and Cellular Signaling in Skeletal Muscle. Proteomes 2021;9:9. [PMID: 33540575 DOI: 10.3390/proteomes9010009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 5.5] [Reference Citation Analysis]
38 Vita GL, Sframeli M, Licata N, Bitto A, Romeo S, Frisone F, Ciranni A, Pallio G, Mannino F, Aguennouz M, Rodolico C, Squadrito F, Toscano A, Messina S, Vita G. A Phase 1/2 Study of Flavocoxid, an Oral NF-κB Inhibitor, in Duchenne Muscular Dystrophy. Brain Sci 2021;11:115. [PMID: 33467104 DOI: 10.3390/brainsci11010115] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
39 Belinskaia DA, Voronina PA, Batalova AA, Goncharov NV. Serum Albumin. Encyclopedia 2021;1:65-75. [DOI: 10.3390/encyclopedia1010009] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
40 Belinskaia DA, Voronina PA, Shmurak VI, Vovk MA, Batalova AA, Jenkins RO, Goncharov NV. The Universal Soldier: Enzymatic and Non-Enzymatic Antioxidant Functions of Serum Albumin. Antioxidants (Basel) 2020;9:E966. [PMID: 33050223 DOI: 10.3390/antiox9100966] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
41 Krishnan VS, Thanigaiarasu LP, White R, Crew R, Larcher T, Le Guiner C, Grounds MD. Dystrophic Dmdmdx rats show early neuronal changes (increased S100β and Tau5) at 8 months, supporting severe dystropathology in this rodent model of Duchenne muscular dystrophy. Mol Cell Neurosci 2020;108:103549. [PMID: 32890728 DOI: 10.1016/j.mcn.2020.103549] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
42 Krishnan VS, Aartsma-rus A, Overzier M, Lutz C, Bogdanik L, Grounds MD. Implications of increased S100β and Tau5 proteins in dystrophic nerves of two mdx mouse models for Duchenne muscular dystrophy. Molecular and Cellular Neuroscience 2020;105:103484. [DOI: 10.1016/j.mcn.2020.103484] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
43 Brusa R, Magri F, Bresolin N, Comi GP, Corti S. Noncoding RNAs in Duchenne and Becker muscular dystrophies: role in pathogenesis and future prognostic and therapeutic perspectives. Cell Mol Life Sci 2020;77:4299-313. [PMID: 32350552 DOI: 10.1007/s00018-020-03537-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]