BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pan W, Adams JM, Allison MB, Patterson C, Flak JN, Jones J, Strohbehn G, Trevaskis J, Rhodes CJ, Olson DP, Myers MG Jr. Essential Role for Hypothalamic Calcitonin Receptor‒Expressing Neurons in the Control of Food Intake by Leptin. Endocrinology 2018;159:1860-72. [PMID: 29522093 DOI: 10.1210/en.2017-03259] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Kakava-Georgiadou N, Drkelic V, Garner KM, Luijendijk MCM, Basak O, Adan RAH. Molecular profile and response to energy deficit of leptin-receptor neurons in the lateral hypothalamus. Sci Rep 2022;12:13374. [PMID: 35927440 DOI: 10.1038/s41598-022-16492-w] [Reference Citation Analysis]
2 Boyle CN, Zheng Y, Lutz TA. Mediators of Amylin Action in Metabolic Control. JCM 2022;11:2207. [DOI: 10.3390/jcm11082207] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Lutz TA. Creating the amylin story. Appetite 2022. [DOI: 10.1016/j.appet.2022.105965] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022;915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
5 Nomura H, Son C, Aotani D, Shimizu Y, Katsuura G, Noguchi M, Kusakabe T, Tanaka T, Miyazawa T, Hosoda K, Nakao K. Impaired leptin responsiveness in the nucleus accumbens of leptin-overexpressing transgenic mice with dysregulated sucrose and lipid preference independent of obesity. Neurosci Res 2021:S0168-0102(21)00263-7. [PMID: 34971637 DOI: 10.1016/j.neures.2021.12.007] [Reference Citation Analysis]
6 Cheng W, Ndoka E, Maung JN, Pan W, Rupp AC, Rhodes CJ, Olson DP, Myers MG Jr. NTS Prlh overcomes orexigenic stimuli and ameliorates dietary and genetic forms of obesity. Nat Commun 2021;12:5175. [PMID: 34462445 DOI: 10.1038/s41467-021-25525-3] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Gonzalez IE, Ramirez-Matias J, Lu C, Pan W, Zhu A, Myers MG, Olson DP. Paraventricular Calcitonin Receptor-Expressing Neurons Modulate Energy Homeostasis in Male Mice. Endocrinology 2021;162:bqab072. [PMID: 33834205 DOI: 10.1210/endocr/bqab072] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ludwig MQ, Cheng W, Gordian D, Lee J, Paulsen SJ, Hansen SN, Egerod KL, Barkholt P, Rhodes CJ, Secher A, Knudsen LB, Pyke C, Myers MG Jr, Pers TH. A genetic map of the mouse dorsal vagal complex and its role in obesity. Nat Metab 2021;3:530-45. [PMID: 33767443 DOI: 10.1038/s42255-021-00363-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
9 Luskin AT, Bhatti DL, Mulvey B, Pedersen CE, Girven KS, Oden-Brunson H, Kimbell K, Blackburn T, Sawyer A, Gereau RW 4th, Dougherty JD, Bruchas MR. Extended amygdala-parabrachial circuits alter threat assessment and regulate feeding. Sci Adv 2021;7:eabd3666. [PMID: 33637526 DOI: 10.1126/sciadv.abd3666] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
10 Zhang C, Kaye JA, Cai Z, Wang Y, Prescott SL, Liberles SD. Area Postrema Cell Types that Mediate Nausea-Associated Behaviors. Neuron 2021;109:461-472.e5. [PMID: 33278342 DOI: 10.1016/j.neuron.2020.11.010] [Cited by in Crossref: 7] [Cited by in F6Publishing: 26] [Article Influence: 3.5] [Reference Citation Analysis]
11 Kern KA, Mietlicki-baase EG. Distributed amylin receptor signaling and its influence on motivated behavior. Physiology & Behavior 2020;222:112958. [DOI: 10.1016/j.physbeh.2020.112958] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
12 Foll CL, Lutz TA. Systemic and Central Amylin, Amylin Receptor Signaling, and Their Physiological and Pathophysiological Roles in Metabolism. Compr Physiol 2020;10:811-37. [PMID: 32941692 DOI: 10.1002/cphy.c190034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
13 Coester B, Foll CL, Lutz TA. Viral depletion of calcitonin receptors in the area postrema: A proof-of-concept study. Physiol Behav 2020;223:112992. [PMID: 32497530 DOI: 10.1016/j.physbeh.2020.112992] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zakariassen HL, John LM, Lutz TA. Central control of energy balance by amylin and calcitonin receptor agonists and their potential for treatment of metabolic diseases. Basic Clin Pharmacol Toxicol 2020;127:163-77. [PMID: 32363722 DOI: 10.1111/bcpt.13427] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
15 Zakariassen HL, John LM, Lykkesfeldt J, Raun K, Glendorf T, Schaffer L, Lundh S, Secher A, Lutz TA, Le Foll C. Salmon calcitonin distributes into the arcuate nucleus to a subset of NPY neurons in mice. Neuropharmacology 2020;167:107987. [PMID: 32035146 DOI: 10.1016/j.neuropharm.2020.107987] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
16 Cheng W, Gonzalez I, Pan W, Tsang AH, Adams J, Ndoka E, Gordian D, Khoury B, Roelofs K, Evers SS, MacKinnon A, Wu S, Frikke-Schmidt H, Flak JN, Trevaskis JL, Rhodes CJ, Fukada SI, Seeley RJ, Sandoval DA, Olson DP, Blouet C, Myers MG Jr. Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding. Cell Metab 2020;31:301-312.e5. [PMID: 31955990 DOI: 10.1016/j.cmet.2019.12.012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 15.0] [Reference Citation Analysis]
17 Boyle CN, Le Foll C. Amylin and Leptin interaction: Role During Pregnancy, Lactation and Neonatal Development. Neuroscience 2020;447:136-47. [PMID: 31846753 DOI: 10.1016/j.neuroscience.2019.11.034] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Juárez-Cruz JC, Zuñiga-Eulogio MD, Olea-Flores M, Castañeda-Saucedo E, Mendoza-Catalán MÁ, Ortuño-Pineda C, Moreno-Godínez ME, Villegas-Comonfort S, Padilla-Benavides T, Navarro-Tito N. Leptin induces cell migration and invasion in a FAK-Src-dependent manner in breast cancer cells. Endocr Connect 2019;8:1539-52. [PMID: 31671408 DOI: 10.1530/EC-19-0442] [Cited by in Crossref: 15] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
19 Leng G. The endocrinology of the brain. Endocr Connect 2018;7:R275-85. [PMID: 30352398 DOI: 10.1530/EC-18-0367] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
20 Olea-Flores M, Juárez-Cruz JC, Mendoza-Catalán MA, Padilla-Benavides T, Navarro-Tito N. Signaling Pathways Induced by Leptin during Epithelial⁻Mesenchymal Transition in Breast Cancer. Int J Mol Sci 2018;19:E3493. [PMID: 30404206 DOI: 10.3390/ijms19113493] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
21 Duffy S, Lutz TA, Boyle CN. Rodent models of leptin receptor deficiency are less sensitive to amylin. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2018;315:R856-65. [DOI: 10.1152/ajpregu.00179.2018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]