BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stechschulte LA, Qiu B, Warrier M, Hinds TD Jr, Zhang M, Gu H, Xu Y, Khuder SS, Russo L, Najjar SM, Lecka-Czernik B, Yong W, Sanchez ER. FKBP51 Null Mice Are Resistant to Diet-Induced Obesity and the PPARγ Agonist Rosiglitazone. Endocrinology 2016;157:3888-900. [PMID: 27442117 DOI: 10.1210/en.2015-1996] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Willmer T, Oosthuizen A, Dias S, Mendham AE, Goedecke JH, Pheiffer C. A pilot investigation of genetic and epigenetic variation of FKBP5 and response to exercise intervention in African women with obesity. Sci Rep 2022;12:11771. [PMID: 35817784 DOI: 10.1038/s41598-022-15678-6] [Reference Citation Analysis]
2 Häusl AS, Bajaj T, Brix LM, Pöhlmann ML, Hafner K, De Angelis M, Nagler J, Dethloff F, Balsevich G, Schramm KW, Giavalisco P, Chen A, Schmidt MV, Gassen NC. Mediobasal hypothalamic FKBP51 acts as a molecular switch linking autophagy to whole-body metabolism. Sci Adv 2022;8:eabi4797. [PMID: 35263141 DOI: 10.1126/sciadv.abi4797] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Strączkowski M, Stefanowicz M, Matulewicz N, Nikołajuk A, Karczewska-Kupczewska M. Relation of adipose tissue and skeletal muscle FKBP5 expression with insulin sensitivity and the regulation of FKBP5 by insulin and free fatty acids. Endocrine 2022. [PMID: 35212883 DOI: 10.1007/s12020-022-03018-7] [Reference Citation Analysis]
4 Bonilauri B, Camillo-Andrade AC, Santos MDM, Fischer JSDG, Carvalho PC, Dallagiovanna B. Proteogenomic Analysis Reveals Proteins Involved in the First Step of Adipogenesis in Human Adipose-Derived Stem Cells. Stem Cells Int 2021;2021:3168428. [PMID: 34956370 DOI: 10.1155/2021/3168428] [Reference Citation Analysis]
5 Barge S, Jade D, Ayyamperumal S, Manna P, Borah J, Nanjan CMJ, Nanjan MJ, Talukdar NC. Potential inhibitors for FKBP51: an in silico study using virtual screening, molecular docking and molecular dynamics simulation. J Biomol Struct Dyn 2021;:1-13. [PMID: 34709133 DOI: 10.1080/07391102.2021.1994877] [Reference Citation Analysis]
6 Smedlund KB, Sanchez ER, Hinds TD Jr. FKBP51 and the molecular chaperoning of metabolism. Trends Endocrinol Metab 2021;32:862-74. [PMID: 34481731 DOI: 10.1016/j.tem.2021.08.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Kusumanchi P, Liang T, Zhang T, Ross RA, Han S, Chandler K, Oshodi A, Jiang Y, Dent AL, Skill NJ, Huda N, Ma J, Yang Z, Liangpunsakul S. Stress-Responsive Gene FK506-Binding Protein 51 Mediates Alcohol-Induced Liver Injury Through the Hippo Pathway and Chemokine (C-X-C Motif) Ligand 1 Signaling. Hepatology 2021;74:1234-50. [PMID: 33710653 DOI: 10.1002/hep.31800] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
8 Hu Z, Ge L, Zhang H, Liu X. Expression of FKBP prolyl isomerase 5 gene in tissues of muscovy duck at different growth stages and its association with muscovy duck weight. Anim Biosci 2022;35:1-12. [PMID: 34237933 DOI: 10.5713/ab.20.0649] [Reference Citation Analysis]
9 Voll AM, Meyners C, Taubert MC, Bajaj T, Heymann T, Merz S, Charalampidou A, Kolos J, Purder PL, Geiger TM, Wessig P, Gassen NC, Bracher A, Hausch F. Macrocyclic FKBP51 Ligands Define a Transient Binding Mode with Enhanced Selectivity. Angew Chem Int Ed Engl 2021;60:13257-63. [PMID: 33843131 DOI: 10.1002/anie.202017352] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Zhang C, Cui X, Feng L, Han Z, Peng D, Fu W, Xing Y. The deficiency of FKBP-5 inhibited hepatocellular progression by increasing the infiltration of distinct immune cells and inhibiting obesity-associated gut microbial metabolite. J Gastrointest Oncol 2021;12:711-21. [PMID: 34012660 DOI: 10.21037/jgo-21-71] [Reference Citation Analysis]
11 Guzeloglu-Kayisli O, Semerci N, Guo X, Larsen K, Ozmen A, Arlier S, Mutluay D, Nwabuobi C, Sipe B, Buhimschi I, Buhimschi C, Schatz F, Kayisli UA, Lockwood CJ. Decidual cell FKBP51-progesterone receptor binding mediates maternal stress-induced preterm birth. Proc Natl Acad Sci U S A 2021;118:e2010282118. [PMID: 33836562 DOI: 10.1073/pnas.2010282118] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Bauder M, Meyners C, Purder PL, Merz S, Sugiarto WO, Voll AM, Heymann T, Hausch F. Structure-Based Design of High-Affinity Macrocyclic FKBP51 Inhibitors. J Med Chem 2021;64:3320-49. [PMID: 33666419 DOI: 10.1021/acs.jmedchem.0c02195] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Engelhardt C, Boulat B, Czisch M, Schmidt MV. Lack of FKBP51 Shapes Brain Structure and Connectivity in Male Mice. J Magn Reson Imaging 2021;53:1358-65. [PMID: 33184939 DOI: 10.1002/jmri.27439] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Dassonvalle J, Díaz-Castro F, Donoso-Barraza C, Sepúlveda C, Pino-de la Fuente F, Pino P, Espinosa A, Chiong M, Llanos M, Troncoso R. Moderate Aerobic Exercise Training Prevents the Augmented Hepatic Glucocorticoid Response Induced by High-Fat Diet in Mice. Int J Mol Sci 2020;21:E7582. [PMID: 33066464 DOI: 10.3390/ijms21207582] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Willmer T, Goedecke JH, Dias S, Louw J, Pheiffer C. DNA methylation of FKBP5 in South African women: associations with obesity and insulin resistance. Clin Epigenetics 2020;12:141. [PMID: 32958048 DOI: 10.1186/s13148-020-00932-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Li H, Su P, Lai TK, Jiang A, Liu J, Zhai D, Campbell CT, Lee FH, Yong W, Pasricha S, Li S, Wong AH, Ressler KJ, Liu F. The glucocorticoid receptor-FKBP51 complex contributes to fear conditioning and posttraumatic stress disorder. J Clin Invest 2020;130:877-89. [PMID: 31929189 DOI: 10.1172/JCI130363] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
17 Gordon DM, Neifer KL, Hamoud AA, Hawk CF, Nestor-Kalinoski AL, Miruzzi SA, Morran MP, Adeosun SO, Sarver JG, Erhardt PW, McCullumsmith RE, Stec DE, Hinds TD Jr. Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator-activated receptor α. J Biol Chem 2020;295:9804-22. [PMID: 32404366 DOI: 10.1074/jbc.RA120.013700] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
18 Stec DE, Gordon DM, Nestor-Kalinoski AL, Donald MC, Mitchell ZL, Creeden JF, Hinds TD Jr. Biliverdin Reductase A (BVRA) Knockout in Adipocytes Induces Hypertrophy and Reduces Mitochondria in White Fat of Obese Mice. Biomolecules 2020;10:E387. [PMID: 32131495 DOI: 10.3390/biom10030387] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
19 Feng X, Sippel C, Knaup FH, Bracher A, Staibano S, Romano MF, Hausch F. A Novel Decalin-Based Bicyclic Scaffold for FKBP51-Selective Ligands. J Med Chem 2020;63:231-40. [PMID: 31800244 DOI: 10.1021/acs.jmedchem.9b01157] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
20 Häusl AS, Balsevich G, Gassen NC, Schmidt MV. Focus on FKBP51: A molecular link between stress and metabolic disorders. Mol Metab 2019;29:170-81. [PMID: 31668388 DOI: 10.1016/j.molmet.2019.09.003] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
21 Jagtap PKA, Asami S, Sippel C, Kaila VRI, Hausch F, Sattler M. Selective Inhibitors of FKBP51 Employ Conformational Selection of Dynamic Invisible States. Angew Chem Int Ed Engl 2019;58:9429-33. [PMID: 31100184 DOI: 10.1002/anie.201902994] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
22 Balsevich G, Abizaid A, Chen A, Karatsoreos IN, Schmidt MV. Stress and glucocorticoid modulation of feeding and metabolism. Neurobiol Stress 2019;11:100171. [PMID: 31193462 DOI: 10.1016/j.ynstr.2019.100171] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
23 Zgajnar NR, De Leo SA, Lotufo CM, Erlejman AG, Piwien-Pilipuk G, Galigniana MD. Biological Actions of the Hsp90-binding Immunophilins FKBP51 and FKBP52. Biomolecules 2019;9:E52. [PMID: 30717249 DOI: 10.3390/biom9020052] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 10.7] [Reference Citation Analysis]
24 Hähle A, Merz S, Meyners C, Hausch F. The Many Faces of FKBP51. Biomolecules 2019;9:E35. [PMID: 30669684 DOI: 10.3390/biom9010035] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 10.3] [Reference Citation Analysis]
25 Kolos JM, Voll AM, Bauder M, Hausch F. FKBP Ligands-Where We Are and Where to Go? Front Pharmacol 2018;9:1425. [PMID: 30568592 DOI: 10.3389/fphar.2018.01425] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 7.5] [Reference Citation Analysis]
26 Baida G, Bhalla P, Yemelyanov A, Stechschulte LA, Shou W, Readhead B, Dudley JT, Sánchez ER, Budunova I. Deletion of the glucocorticoid receptor chaperone FKBP51 prevents glucocorticoid-induced skin atrophy. Oncotarget 2018;9:34772-83. [PMID: 30410676 DOI: 10.18632/oncotarget.26194] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
27 Sidibeh CO, Pereira MJ, Abalo XM, J Boersma G, Skrtic S, Lundkvist P, Katsogiannos P, Hausch F, Castillejo-López C, Eriksson JW. FKBP5 expression in human adipose tissue: potential role in glucose and lipid metabolism, adipogenesis and type 2 diabetes. Endocrine 2018;62:116-28. [PMID: 30032404 DOI: 10.1007/s12020-018-1674-5] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
28 Cope ER, Voy BH, Whitlock BK, Staton M, Lane T, Davitt J, Mulliniks JT. Beta-hydroxybutyrate infusion identifies acutely differentially expressed genes related to metabolism and reproduction in the hypothalamus and pituitary of castrated male sheep. Physiol Genomics 2018;50:468-77. [PMID: 29625019 DOI: 10.1152/physiolgenomics.00104.2017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Pomplun S, Sippel C, Hähle A, Tay D, Shima K, Klages A, Ünal CM, Rieß B, Toh HT, Hansen G, Yoon HS, Bracher A, Preiser P, Rupp J, Steinert M, Hausch F. Chemogenomic Profiling of Human and Microbial FK506-Binding Proteins. J Med Chem 2018;61:3660-73. [PMID: 29578710 DOI: 10.1021/acs.jmedchem.8b00137] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
30 Wei M, Gao Y, Lu B, Jiao Y, Liu X, Cui B, Hu S, Sun L, Mao S, Dong J, Yan L, Chen Z, Zhao Y. FKBP51 regulates decidualization through Ser473 dephosphorylation of AKT. Reproduction 2018;155:283-95. [DOI: 10.1530/rep-17-0625] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Yu J, Yang X, Yang X, Yang M, Wang P, Yang Y, Yang J, Li W, Xu J. Nonylphenol aggravates non-alcoholic fatty liver disease in high sucrose-high fat diet-treated rats. Sci Rep 2018;8:3232. [PMID: 29459774 DOI: 10.1038/s41598-018-21725-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
32 Fries GR, Gassen NC, Rein T. The FKBP51 Glucocorticoid Receptor Co-Chaperone: Regulation, Function, and Implications in Health and Disease. Int J Mol Sci 2017;18:E2614. [PMID: 29206196 DOI: 10.3390/ijms18122614] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 10.2] [Reference Citation Analysis]
33 Balsevich G, Häusl AS, Meyer CW, Karamihalev S, Feng X, Pöhlmann ML, Dournes C, Uribe-Marino A, Santarelli S, Labermaier C, Hafner K, Mao T, Breitsamer M, Theodoropoulou M, Namendorf C, Uhr M, Paez-Pereda M, Winter G, Hausch F, Chen A, Tschöp MH, Rein T, Gassen NC, Schmidt MV. Stress-responsive FKBP51 regulates AKT2-AS160 signaling and metabolic function. Nat Commun 2017;8:1725. [PMID: 29170369 DOI: 10.1038/s41467-017-01783-y] [Cited by in Crossref: 43] [Cited by in F6Publishing: 41] [Article Influence: 8.6] [Reference Citation Analysis]
34 Kumar R, Moche M, Winblad B, Pavlov PF. Combined x-ray crystallography and computational modeling approach to investigate the Hsp90 C-terminal peptide binding to FKBP51. Sci Rep 2017;7:14288. [PMID: 29079741 DOI: 10.1038/s41598-017-14731-z] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
35 Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cellular Signalling 2017;38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
36 Peterson RG, Jackson CV, Zimmerman KM, Alsina-Fernandez J, Michael MD, Emmerson PJ, Coskun T. Glucose dysregulation and response to common anti-diabetic agents in the FATZO/Pco mouse. PLoS One. 2017;12:e0179856. [PMID: 28640857 DOI: 10.1371/journal.pone.0179856] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
37 Zhou Z, Wan J, Hou X, Geng J, Li X, Bai X. MicroRNA-27a promotes podocyte injury via PPARγ-mediated β-catenin activation in diabetic nephropathy. Cell Death Dis 2017;8:e2658. [PMID: 28277542 DOI: 10.1038/cddis.2017.74] [Cited by in Crossref: 55] [Cited by in F6Publishing: 51] [Article Influence: 11.0] [Reference Citation Analysis]
38 Zhang L, Qiu B, Wang T, Wang J, Liu M, Xu Y, Wang C, Deng R, Williams K, Yang Z, Liang T, Yong W. Loss of FKBP5 impedes adipocyte differentiation under both normoxia and hypoxic stress. Biochem Biophys Res Commun 2017;485:761-7. [PMID: 28254433 DOI: 10.1016/j.bbrc.2017.02.126] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
39 Marino JS, Stechschulte LA, Stec DE, Nestor-Kalinoski A, Coleman S, Hinds TD Jr. Glucocorticoid Receptor β Induces Hepatic Steatosis by Augmenting Inflammation and Inhibition of the Peroxisome Proliferator-activated Receptor (PPAR) α. J Biol Chem 2016;291:25776-88. [PMID: 27784782 DOI: 10.1074/jbc.M116.752311] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 5.8] [Reference Citation Analysis]
40 Bargut TC, Aguila MB, Mandarim-de-Lacerda CA. Brown adipose tissue: Updates in cellular and molecular biology. Tissue Cell 2016;48:452-60. [PMID: 27561621 DOI: 10.1016/j.tice.2016.08.001] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 6.8] [Reference Citation Analysis]