BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hinz L, Torrella Barrufet J, Heine VM. KCC2 expression levels are reduced in post mortem brain tissue of Rett syndrome patients. Acta Neuropathol Commun 2019;7:196. [PMID: 31796123 DOI: 10.1186/s40478-019-0852-x] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
Number Citing Articles
1 Miles KD, Doll CA. Chloride imbalance in Fragile X syndrome. Front Neurosci 2022;16:1008393. [DOI: 10.3389/fnins.2022.1008393] [Reference Citation Analysis]
2 Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022;15:893111. [DOI: 10.3389/fnmol.2022.893111] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Szymanski J, Minichiello L. NKCC1 Deficiency in Forming Hippocampal Circuits Triggers Neurodevelopmental Disorder: Role of BDNF-TrkB Signalling. Brain Sciences 2022;12:502. [DOI: 10.3390/brainsci12040502] [Reference Citation Analysis]
4 Barbato C, Frisone P, Braccini L, D’aguanno S, Pieroni L, Ciotti MT, Catalanotto C, Cogoni C, Ruberti F. Silencing of Ago-2 Interacting Protein SERBP1 Relieves KCC2 Repression by miR-92 in Neurons. Cells 2022;11:1052. [DOI: 10.3390/cells11061052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Luo SS, Zou KX, Zhu H, Cheng Y, Yan YS, Sheng JZ, Huang HF, Ding GL. Integrated Multi-Omics Analysis Reveals the Effect of Maternal Gestational Diabetes on Fetal Mouse Hippocampi. Front Cell Dev Biol 2022;10:748862. [PMID: 35237591 DOI: 10.3389/fcell.2022.748862] [Reference Citation Analysis]
6 Grimm N, Lee JT. Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome. Trends in Genetics 2022. [DOI: 10.1016/j.tig.2022.01.007] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Li W. Excitation and Inhibition Imbalance in Rett Syndrome. Front Neurosci 2022;16:825063. [DOI: 10.3389/fnins.2022.825063] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Gigliucci V, Teutsch J, Woodbury-Smith M, Luoni M, Busnelli M, Chini B, Banerjee A. Region-Specific KCC2 Rescue by rhIGF-1 and Oxytocin in a Mouse Model of Rett Syndrome. Cereb Cortex 2021:bhab388. [PMID: 34791112 DOI: 10.1093/cercor/bhab388] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Verma V, Kumar MJV, Sharma K, Rajaram S, Muddashetty R, Manjithaya R, Behnisch T, Clement JP. Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1+/- mice. Exp Brain Res 2021. [PMID: 34739555 DOI: 10.1007/s00221-021-06254-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
10 Savardi A, Borgogno M, De Vivo M, Cancedda L. Pharmacological tools to target NKCC1 in brain disorders. Trends Pharmacol Sci 2021;42:1009-34. [PMID: 34620512 DOI: 10.1016/j.tips.2021.09.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
11 Belaïdouni Y, Diabira D, Zhang J, Graziano JC, Bader F, Montheil A, Menuet C, Wayman GA, Gaiarsa JL. The Chloride Homeostasis of CA3 Hippocampal Neurons Is Not Altered in Fully Symptomatic Mepc2-null Mice. Front Cell Neurosci 2021;15:724976. [PMID: 34602980 DOI: 10.3389/fncel.2021.724976] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Gigliucci V, Teutsch J, Woodbury-smith M, Luoni M, Busnelli M, Chini B, Banerjee A. Region-specific KCC2 rescue by rhIGF-1 and oxytocin in a mouse model of Rett syndrome.. [DOI: 10.1101/2021.09.25.460342] [Reference Citation Analysis]
13 Smirnov K, Stroganova T, Molholm S, Sysoeva O. Reviewing Evidence for the Relationship of EEG Abnormalities and RTT Phenotype Paralleled by Insights from Animal Studies. Int J Mol Sci 2021;22:5308. [PMID: 34069993 DOI: 10.3390/ijms22105308] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Scaramuzza L, De Rocco G, Desiato G, Cobolli Gigli C, Chiacchiaretta M, Mirabella F, Pozzi D, De Simone M, Conforti P, Pagani M, Benfenati F, Cesca F, Bedogni F, Landsberger N. The enhancement of activity rescues the establishment of Mecp2 null neuronal phenotypes. EMBO Mol Med 2021;13:e12433. [PMID: 33665914 DOI: 10.15252/emmm.202012433] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Josiah SS, Meor Azlan NF, Zhang J. Targeting the WNK-SPAK/OSR1 Pathway and Cation-Chloride Cotransporters for the Therapy of Stroke. Int J Mol Sci 2021;22:1232. [PMID: 33513812 DOI: 10.3390/ijms22031232] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
16 Sontheimer H. Neurodevelopmental Disorders. Diseases of the Nervous System 2021. [DOI: 10.1016/b978-0-12-821228-8.00014-7] [Reference Citation Analysis]
17 Delpire E. Advances in the development of novel compounds targeting cation-chloride cotransporter physiology. Am J Physiol Cell Physiol 2021;320:C324-40. [PMID: 33356948 DOI: 10.1152/ajpcell.00566.2020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
18 Andrews K, Josiah SS, Zhang J. The Therapeutic Potential of Neuronal K-Cl Co-Transporter KCC2 in Huntington's Disease and Its Comorbidities. Int J Mol Sci 2020;21:E9142. [PMID: 33266310 DOI: 10.3390/ijms21239142] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Pozzi D, Rasile M, Corradini I, Matteoli M. Environmental regulation of the chloride transporter KCC2: switching inflammation off to switch the GABA on? Transl Psychiatry 2020;10:349. [PMID: 33060559 DOI: 10.1038/s41398-020-01027-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
20 Kesaf S, Khirug S, Dinh E, Saez Garcia M, Soni S, Orav E, Delpire E, Taira T, Lauri SE, Rivera C. The Kainate Receptor Subunit GluK2 Interacts With KCC2 to Promote Maturation of Dendritic Spines. Front Cell Neurosci 2020;14:252. [PMID: 33005130 DOI: 10.3389/fncel.2020.00252] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
21 Savardi A, Borgogno M, Narducci R, La Sala G, Ortega JA, Summa M, Armirotti A, Bertorelli R, Contestabile A, De Vivo M, Cancedda L. Discovery of a Small Molecule Drug Candidate for Selective NKCC1 Inhibition in Brain Disorders. Chem 2020;6:2073-96. [PMID: 32818158 DOI: 10.1016/j.chempr.2020.06.017] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 12.5] [Reference Citation Analysis]
22 Duy PQ, He M, He Z, Kahle KT. Preclinical insights into therapeutic targeting of KCC2 for disorders of neuronal hyperexcitability. Expert Opin Ther Targets 2020;24:629-37. [PMID: 32336175 DOI: 10.1080/14728222.2020.1762174] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Scaramuzza L, De Rocco G, Desiato G, Gigli CC, Chiacchiaretta M, Mirabella F, Pozzi D, De Simone M, Conforti P, Pagani M, Benfenati F, Cesca F, Bedogni F, Landsberger N. The enhancement of activity rescues the establishment of Mecp2 null neuronal phenotypes.. [DOI: 10.1101/2020.04.06.027995] [Reference Citation Analysis]
24 Tang BL. The Expanding Therapeutic Potential of Neuronal KCC2. Cells 2020;9:E240. [PMID: 31963584 DOI: 10.3390/cells9010240] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]