BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ortuño-Lizarán I, Esquiva G, Beach TG, Serrano GE, Adler CH, Lax P, Cuenca N. Degeneration of human photosensitive retinal ganglion cells may explain sleep and circadian rhythms disorders in Parkinson's disease. Acta Neuropathol Commun 2018;6:90. [PMID: 30201049 DOI: 10.1186/s40478-018-0596-z] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Mauri S, Favaro M, Bernardo G, Mazzotta GM, Ziviani E. Mitochondrial autophagy in the sleeping brain. Front Cell Dev Biol 2022;10:956394. [DOI: 10.3389/fcell.2022.956394] [Reference Citation Analysis]
2 Ji Q, Wang X, Zhao W, Wills M, Yun HJ, Tong Y, Cai L, Geng X, Ding Y. Effects of remote ischemic conditioning on sleep complaints in Parkinson's disease–rationale, design, and protocol for a randomized controlled study. Front Neurol 2022;13:932199. [DOI: 10.3389/fneur.2022.932199] [Reference Citation Analysis]
3 Lee JY, Martin-Bastida A, Murueta-Goyena A, Gabilondo I, Cuenca N, Piccini P, Jeon B. Multimodal brain and retinal imaging of dopaminergic degeneration in Parkinson disease. Nat Rev Neurol 2022. [PMID: 35177849 DOI: 10.1038/s41582-022-00618-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Zhang Y, Zhang X, Yue Y, Tian T. Retinal Degeneration: A Window to Understand the Origin and Progression of Parkinson’s Disease? Front Neurosci 2022;15:799526. [DOI: 10.3389/fnins.2021.799526] [Reference Citation Analysis]
5 Ruzafa N, Pereiro X, Vecino E. Immunohistochemical Characterisation of the Whale Retina. Front Neuroanat 2022;16:813369. [DOI: 10.3389/fnana.2022.813369] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson's disease and preclinical models. Mol Neurodegener 2022;17:2. [PMID: 35000606 DOI: 10.1186/s13024-021-00504-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Woo KA, Shin JY, Kim H, Ahn J, Jeon B, Lee JY. Peripapillary retinal nerve fiber layer thinning in patients with progressive supranuclear palsy. J Neurol 2021. [PMID: 34921616 DOI: 10.1007/s00415-021-10936-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Nassan M, Videnovic A. Circadian rhythms in neurodegenerative disorders. Nat Rev Neurol 2021. [PMID: 34759373 DOI: 10.1038/s41582-021-00577-7] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
9 La Morgia C, Romagnoli M, Pizza F, Biscarini F, Filardi M, Donadio V, Carbonelli M, Amore G, Park JC, Tinazzi M, Carelli V, Liguori R, Plazzi G, Antelmi E. Chromatic Pupillometry in Isolated Rapid Eye Movement Sleep Behavior Disorder. Mov Disord 2021. [PMID: 34617633 DOI: 10.1002/mds.28809] [Reference Citation Analysis]
10 Colwell CS. Defining circadian disruption in neurodegenerative disorders. J Clin Invest 2021;131:e148288. [PMID: 34596047 DOI: 10.1172/JCI148288] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Veys L, Devroye J, Lefevere E, Cools L, Vandenabeele M, De Groef L. Characterizing the Retinal Phenotype of the Thy1-h[A30P]α-syn Mouse Model of Parkinson's Disease. Front Neurosci 2021;15:726476. [PMID: 34557068 DOI: 10.3389/fnins.2021.726476] [Reference Citation Analysis]
12 Ahn J, Gorin MB. The Associations of Obstructive Sleep Apnea and Eye Disorders: Potential Insights into Pathogenesis and Treatment. Curr Sleep Medicine Rep 2021;7:65-79. [DOI: 10.1007/s40675-021-00215-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Mohanty D, Hay KR, Berkowitz S, Patel S, Lin YC, Kang H, Claassen DO. Clinical implications of photophobia in progressive supranuclear palsy. Clin Park Relat Disord 2021;4:100097. [PMID: 34316674 DOI: 10.1016/j.prdoa.2021.100097] [Reference Citation Analysis]
14 Mure LS. Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Front Neurol 2021;12:636330. [PMID: 33841306 DOI: 10.3389/fneur.2021.636330] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
15 Yang Z, Zhang X, Li C, Chi S, Xie A. Molecular Mechanisms Underlying Reciprocal Interactions Between Sleep Disorders and Parkinson's Disease. Front Neurosci 2020;14:592989. [PMID: 33642969 DOI: 10.3389/fnins.2020.592989] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
16 Sion B, Bégou M. Can chronopharmacology improve the therapeutic management of neurological diseases? Fundam Clin Pharmacol 2021;35:564-81. [PMID: 33539566 DOI: 10.1111/fcp.12659] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Vidal-Villegas B, Gallego-Ortega A, Miralles de Imperial-Ollero JA, Martínez de la Casa JM, García Feijoo J, Vidal-Sanz M. Photosensitive ganglion cells: A diminutive, yet essential population. Arch Soc Esp Oftalmol (Engl Ed) 2021;96:299-315. [PMID: 34092284 DOI: 10.1016/j.oftale.2020.06.020] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Feigl B, Dumpala S, Kerr GK, Zele AJ. Melanopsin Cell Dysfunction is Involved in Sleep Disruption in Parkinson’s Disease. JPD 2020;10:1467-76. [DOI: 10.3233/jpd-202178] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Zuzuárregui JRP, During EH. Sleep Issues in Parkinson's Disease and Their Management. Neurotherapeutics 2020;17:1480-94. [PMID: 33029723 DOI: 10.1007/s13311-020-00938-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
20 Ortuño-Lizarán I, Sánchez-Sáez X, Lax P, Serrano GE, Beach TG, Adler CH, Cuenca N. Dopaminergic Retinal Cell Loss and Visual Dysfunction in Parkinson Disease. Ann Neurol 2020;88:893-906. [PMID: 32881029 DOI: 10.1002/ana.25897] [Cited by in Crossref: 11] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
21 Fifel K, Videnovic A. Circadian alterations in patients with neurodegenerative diseases: Neuropathological basis of underlying network mechanisms. Neurobiol Dis 2020;144:105029. [PMID: 32736083 DOI: 10.1016/j.nbd.2020.105029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
22 Sahbaz C, Elbay A, Ozcelik M, Ozdemir H. Insomnia Might Influence the Thickness of Choroid, Retinal Nerve Fiber and Inner Plexiform Layer. Brain Sci 2020;10:E178. [PMID: 32204463 DOI: 10.3390/brainsci10030178] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Sondereker KB, Stabio ME, Renna JM. Crosstalk: The diversity of melanopsin ganglion cell types has begun to challenge the canonical divide between image-forming and non-image-forming vision. J Comp Neurol 2020;528:2044-67. [PMID: 32003463 DOI: 10.1002/cne.24873] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 8.5] [Reference Citation Analysis]
24 Wallace DM, Wohlgemuth WK, Trotti LM, Amara AW, Malaty IA, Factor SA, Nallu S, Wittine L, Hauser RA. Practical Evaluation and Management of Insomnia in Parkinson's Disease: A Review. Mov Disord Clin Pract 2020;7:250-66. [PMID: 32258222 DOI: 10.1002/mdc3.12899] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
25 Oh AJ, Amore G, Sultan W, Asanad S, Park JC, Romagnoli M, La Morgia C, Karanjia R, Harrington MG, Sadun AA. Pupillometry evaluation of melanopsin retinal ganglion cell function and sleep-wake activity in pre-symptomatic Alzheimer's disease. PLoS One 2019;14:e0226197. [PMID: 31821378 DOI: 10.1371/journal.pone.0226197] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
26 Baumann CR. Sleep–wake and circadian disturbances in Parkinson disease: a short clinical guide. J Neural Transm 2019;126:863-9. [DOI: 10.1007/s00702-019-02039-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
27 Lax P, Ortuño-Lizarán I, Maneu V, Vidal-Sanz M, Cuenca N. Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int J Mol Sci 2019;20:E3164. [PMID: 31261700 DOI: 10.3390/ijms20133164] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
28 Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019;126:933-95. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
29 Veys L, Vandenabeele M, Ortuño-Lizarán I, Baekelandt V, Cuenca N, Moons L, De Groef L. Retinal α-synuclein deposits in Parkinson's disease patients and animal models. Acta Neuropathol 2019;137:379-95. [PMID: 30721408 DOI: 10.1007/s00401-018-01956-z] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 14.3] [Reference Citation Analysis]
30 Fifel K, Videnovic A. Chronotherapies for Parkinson's disease. Prog Neurobiol 2019;174:16-27. [PMID: 30658126 DOI: 10.1016/j.pneurobio.2019.01.002] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]