BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu X, Bautista J, Liu E, Zikopoulos B. Imbalance of laminar-specific excitatory and inhibitory circuits of the orbitofrontal cortex in autism. Mol Autism 2020;11:83. [PMID: 33081829 DOI: 10.1186/s13229-020-00390-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Karavallil Achuthan S, Coburn KL, Beckerson ME, Kana RK. Amplitude of low frequency fluctuations during resting state fMRI in autistic children. Autism Res 2023;16:84-98. [PMID: 36349875 DOI: 10.1002/aur.2846] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Xiao L, Jiang S, Wang Y, Gao C, Liu C, Huo X, Li W, Guo B, Wang C, Sun Y, Wang A, Feng Y, Wang F, Sun T. Continuous high-frequency deep brain stimulation of the anterior insula modulates autism-like behavior in a valproic acid-induced rat model. J Transl Med 2022;20:570. [PMID: 36474209 DOI: 10.1186/s12967-022-03787-9] [Reference Citation Analysis]
3 Knudsen LV, Sheldrick AJ, Vafaee MS, Michel TM. Diversifying autism neuroimaging research: An arterial spin labeling review. Autism 2022. [DOI: 10.1177/13623613221137230] [Reference Citation Analysis]
4 Zhou B, Yan X, Yang L, Zheng X, Chen Y, Liu Y, Ren Y, Peng J, Zhang Y, Huang J, Tang L, Wen M. Effects of arginine vasopressin on the transcriptome of prefrontal cortex in autistic rat model. J Cell Mol Med 2022. [PMID: 36239083 DOI: 10.1111/jcmm.17578] [Reference Citation Analysis]
5 Pantazopoulos H, Hossain NM, Chelini G, Durning P, Barbas H, Zikopoulos B, Berretta S. Chondroitin Sulphate Proteoglycan Axonal Coats in the Human Mediodorsal Thalamic Nucleus. Front Integr Neurosci 2022;16:934764. [DOI: 10.3389/fnint.2022.934764] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Yang D, Tao H, Ge H, Li Z, Hu Y, Meng J. Altered Processing of Social Emotions in Individuals With Autistic Traits. Front Psychol 2022;13:746192. [PMID: 35310287 DOI: 10.3389/fpsyg.2022.746192] [Reference Citation Analysis]
7 Habata K, Cheong Y, Kamiya T, Shiotsu D, Omori IM, Okazawa H, Jung M, Kosaka H. Relationship between sensory characteristics and cortical thickness/volume in autism spectrum disorders. Transl Psychiatry 2021;11:616. [PMID: 34873147 DOI: 10.1038/s41398-021-01743-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Gawlińska K, Gawliński D, Kowal-Wiśniewska E, Jarmuż-Szymczak M, Filip M. Alteration of the Early Development Environment by Maternal Diet and the Occurrence of Autistic-like Phenotypes in Rat Offspring. Int J Mol Sci 2021;22:9662. [PMID: 34575826 DOI: 10.3390/ijms22189662] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Fischi-Gomez E, Bonnier G, Ward N, Granziera C, Hadjikhani N. Ultrahigh field in vivo characterization of microstructural abnormalities in the orbitofrontal cortex and amygdala in autism. Eur J Neurosci 2021. [PMID: 34390517 DOI: 10.1111/ejn.15420] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Yang J, Huber L, Yu Y, Bandettini PA. Linking cortical circuit models to human cognition with laminar fMRI. Neurosci Biobehav Rev 2021;128:467-78. [PMID: 34245758 DOI: 10.1016/j.neubiorev.2021.07.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]