BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Taroni JN, Greene CS, Martyanov V, Wood TA, Christmann RB, Farber HW, Lafyatis RA, Denton CP, Hinchcliff ME, Pioli PA, Mahoney JM, Whitfield ML. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med 2017;9:27. [PMID: 28330499 DOI: 10.1186/s13073-017-0417-1] [Cited by in Crossref: 54] [Cited by in F6Publishing: 48] [Article Influence: 10.8] [Reference Citation Analysis]
Number Citing Articles
1 Franks JM, Martyanov V, Wang Y, Wood TA, Pinckney A, Crofford LJ, Keyes-Elstein L, Furst DE, Goldmuntz E, Mayes MD, McSweeney P, Nash RA, Sullivan KM, Whitfield ML. Machine learning predicts stem cell transplant response in severe scleroderma. Ann Rheum Dis 2020;79:1608-15. [PMID: 32933919 DOI: 10.1136/annrheumdis-2020-217033] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
2 Lescoat A, Jégo P, Lecureur V. M-CSF and GM-CSF monocyte-derived macrophages in systemic sclerosis: the two sides of the same coin? Ann Rheum Dis 2019;78:e19. [PMID: 29439999 DOI: 10.1136/annrheumdis-2018-213112] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
3 Ballerie A, Lescoat A, Augagneur Y, Lelong M, Morzadec C, Cazalets C, Jouneau S, Fardel O, Vernhet L, Jégo P, Lecureur V. Efferocytosis capacities of blood monocyte-derived macrophages in systemic sclerosis. Immunol Cell Biol 2019;97:340-7. [PMID: 30426551 DOI: 10.1111/imcb.12217] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
4 Chadli L, Sotthewes B, Li K, Andersen SN, Cahir-McFarland E, Cheung M, Cullen P, Dorjée A, de Vries-Bouwstra JK, Huizinga TWJ, Fischer DF, DeGroot J, Viney JL, Zheng TS, Aarbiou J, Gardet A. Identification of regulators of the myofibroblast phenotype of primary dermal fibroblasts from early diffuse systemic sclerosis patients. Sci Rep 2019;9:4521. [PMID: 30872777 DOI: 10.1038/s41598-019-41153-w] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
5 Worrell JC, Leslie J, Smith GR, Zaki MYW, Paish HL, Knox A, James ML, Cartwright TN, O'Reilly S, Kania G, Distler O, Distler JHW, Herrick AL, Jeziorska M, Borthwick LA, Fisher AJ, Mann J, Mann DA, Oakley F. cRel expression regulates distinct transcriptional and functional profiles driving fibroblast matrix production in systemic sclerosis. Rheumatology (Oxford) 2020;59:3939-51. [PMID: 32725139 DOI: 10.1093/rheumatology/keaa272] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Mehta BK, Espinoza ME, Hinchcliff M, Whitfield ML. Molecular "omic" signatures in systemic sclerosis. Eur J Rheumatol 2020;7:S173-80. [PMID: 33164732 DOI: 10.5152/eurjrheum.2020.19192] [Reference Citation Analysis]
7 Roofeh D, Lescoat A, Khanna D. Emerging drugs for the treatment of scleroderma: a review of recent phase 2 and 3 trials. Expert Opin Emerg Drugs 2020;25:455-66. [PMID: 33054463 DOI: 10.1080/14728214.2020.1836156] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Doridot L, Jeljeli M, Chêne C, Batteux F. Implication of oxidative stress in the pathogenesis of systemic sclerosis via inflammation, autoimmunity and fibrosis. Redox Biol 2019;25:101122. [PMID: 30737171 DOI: 10.1016/j.redox.2019.101122] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
9 Bosello S, Angelucci C, Lama G, Alivernini S, Proietti G, Tolusso B, Sica G, Gremese E, Ferraccioli G. Characterization of inflammatory cell infiltrate of scleroderma skin: B cells and skin score progression. Arthritis Res Ther 2018;20:75. [PMID: 29669578 DOI: 10.1186/s13075-018-1569-0] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
10 Ricard-blum S, Miele AE. Omic approaches to decipher the molecular mechanisms of fibrosis, and design new anti-fibrotic strategies. Seminars in Cell & Developmental Biology 2020;101:161-9. [DOI: 10.1016/j.semcdb.2019.12.009] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
11 Li H, Ding L, Hong X, Chen Y, Liao R, Wang T, Meng S, Jiang Z, Liu D. Integrative genomic expression analysis reveals stable differences between lung cancer and systemic sclerosis. BMC Cancer 2021;21:259. [PMID: 33691643 DOI: 10.1186/s12885-021-07959-6] [Reference Citation Analysis]
12 Korman B. Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl Res 2019;209:77-89. [PMID: 30876809 DOI: 10.1016/j.trsl.2019.02.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 30] [Article Influence: 10.0] [Reference Citation Analysis]
13 Zhang P, Cobat A, Lee YS, Wu Y, Bayrak CS, Boccon-Gibod C, Matuozzo D, Lorenzo L, Jain A, Boucherit S, Vallée L, Stüve B, Chabrier S, Casanova JL, Abel L, Zhang SY, Itan Y. A computational approach for detecting physiological homogeneity in the midst of genetic heterogeneity. Am J Hum Genet 2021;108:1012-25. [PMID: 34015270 DOI: 10.1016/j.ajhg.2021.04.023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Kim S, Chun SH, Park HJ, Lee S. Systemic Sclerosis and Microbiota: Overview of Current Research Trends and Future Perspective. J Rheum Dis 2019;26:235. [DOI: 10.4078/jrd.2019.26.4.235] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Kobayashi S, Nagafuchi Y, Okubo M, Sugimori Y, Shirai H, Hatano H, Junko M, Yanaoka H, Takeshima Y, Ota M, Iwasaki Y, Sumitomo S, Okamura T, Yamamoto K, Shoda H, Fujio K. Integrated bulk and single-cell RNA-sequencing identified disease-relevant monocytes and a gene network module underlying systemic sclerosis. J Autoimmun 2021;116:102547. [PMID: 33039247 DOI: 10.1016/j.jaut.2020.102547] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
16 Quinlivan A, Ross L, Proudman S. Systemic sclerosis: Advances towards stratified medicine. Best Pract Res Clin Rheumatol 2020;34:101469. [PMID: 31973938 DOI: 10.1016/j.berh.2019.101469] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Karimizadeh E, Sharifi-Zarchi A, Nikaein H, Salehi S, Salamatian B, Elmi N, Gharibdoost F, Mahmoudi M. Analysis of gene expression profiles and protein-protein interaction networks in multiple tissues of systemic sclerosis. BMC Med Genomics 2019;12:199. [PMID: 31881890 DOI: 10.1186/s12920-019-0632-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Brown M, O'Reilly S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin Exp Immunol 2019;195:310-21. [PMID: 30430560 DOI: 10.1111/cei.13238] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 4.5] [Reference Citation Analysis]
19 Müller C, Schibli R, Maurer B. Can Nuclear Imaging of Activated Macrophages with Folic Acid-Based Radiotracers Serve as a Prognostic Means to Identify COVID-19 Patients at Risk? Pharmaceuticals (Basel) 2020;13:E238. [PMID: 32916949 DOI: 10.3390/ph13090238] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
20 Franks JM, Whitfield ML. Insights Into Systemic Sclerosis from Gene Expression Profiling. Curr Treat Options in Rheum 2021;7:208-21. [DOI: 10.1007/s40674-021-00183-0] [Reference Citation Analysis]
21 Moreno-Moral A, Bagnati M, Koturan S, Ko JH, Fonseca C, Harmston N, Game L, Martin J, Ong V, Abraham DJ, Denton CP, Behmoaras J, Petretto E. Changes in macrophage transcriptome associate with systemic sclerosis and mediate GSDMA contribution to disease risk. Ann Rheum Dis 2018;77:596-601. [PMID: 29348297 DOI: 10.1136/annrheumdis-2017-212454] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
22 Cutolo M, Trombetta AC, Soldano S. Monocyte and macrophage phenotypes: a look beyond systemic sclerosis. Response to: 'M1/M2 polarisation state of M-CSF blood-derived macrophages in systemic sclerosis' by Lescoat et al. Ann Rheum Dis 2019;78:e128-e128. [DOI: 10.1136/annrheumdis-2018-214371] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
23 Toledo DM, Pioli PA. Macrophages in Systemic Sclerosis: Novel Insights and Therapeutic Implications. Curr Rheumatol Rep 2019;21:31. [PMID: 31123840 DOI: 10.1007/s11926-019-0831-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
24 Franks JM, Martyanov V, Cai G, Wang Y, Li Z, Wood TA, Whitfield ML. A Machine Learning Classifier for Assigning Individual Patients With Systemic Sclerosis to Intrinsic Molecular Subsets. Arthritis Rheumatol 2019;71:1701-10. [PMID: 30920766 DOI: 10.1002/art.40898] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
25 Zhang P, Itan Y. Biological Network Approaches and Applications in Rare Disease Studies. Genes (Basel) 2019;10:E797. [PMID: 31614842 DOI: 10.3390/genes10100797] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
26 Lescoat A, Ballerie A, Augagneur Y, Morzadec C, Vernhet L, Fardel O, Jégo P, Jouneau S, Lecureur V. Distinct Properties of Human M-CSF and GM-CSF Monocyte-Derived Macrophages to Simulate Pathological Lung Conditions In Vitro: Application to Systemic and Inflammatory Disorders with Pulmonary Involvement. Int J Mol Sci 2018;19:E894. [PMID: 29562615 DOI: 10.3390/ijms19030894] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
27 Matic S, Popovic S, Djurdjevic P, Todorovic D, Djordjevic N, Mijailovic Z, Sazdanovic P, Milovanovic D, Ruzic Zecevic D, Petrovic M, Sazdanovic M, Zornic N, Vukicevic V, Petrovic I, Matic S, Karic Vukicevic M, Baskic D. SARS-CoV-2 infection induces mixed M1/M2 phenotype in circulating monocytes and alterations in both dendritic cell and monocyte subsets. PLoS One 2020;15:e0241097. [PMID: 33382687 DOI: 10.1371/journal.pone.0241097] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
28 Lescoat A, Ballerie A, Jouneau S, Fardel O, Vernhet L, Jego P, Lecureur V. M1/M2 polarisation state of M-CSF blood-derived macrophages in systemic sclerosis. Ann Rheum Dis 2019;78:e127. [PMID: 30269049 DOI: 10.1136/annrheumdis-2018-214333] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
29 Trombetta AC, Soldano S, Contini P, Tomatis V, Ruaro B, Paolino S, Brizzolara R, Montagna P, Sulli A, Pizzorni C, Smith V, Cutolo M. A circulating cell population showing both M1 and M2 monocyte/macrophage surface markers characterizes systemic sclerosis patients with lung involvement. Respir Res 2018;19:186. [PMID: 30249259 DOI: 10.1186/s12931-018-0891-z] [Cited by in Crossref: 50] [Cited by in F6Publishing: 51] [Article Influence: 12.5] [Reference Citation Analysis]
30 Schniering J, Benešová M, Brunner M, Haller S, Cohrs S, Frauenfelder T, Vrugt B, Feghali-Bostwick C, Schibli R, Distler O, Müller C, Maurer B. 18F-AzaFol for Detection of Folate Receptor-β Positive Macrophages in Experimental Interstitial Lung Disease-A Proof-of-Concept Study. Front Immunol 2019;10:2724. [PMID: 31824505 DOI: 10.3389/fimmu.2019.02724] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
31 Zhu H, Chen W, Liu D, Luo H. The role of metabolism in the pathogenesis of systemic sclerosis. Metabolism 2019;93:44-51. [PMID: 30586574 DOI: 10.1016/j.metabol.2018.12.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
32 Sun Z, Wang W, Yu D, Mao Y. Differentially expressed genes between systemic sclerosis and rheumatoid arthritis. Hereditas 2019;156:17. [PMID: 31178673 DOI: 10.1186/s41065-019-0091-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
33 Nicolosi PA, Tombetti E, Giovenzana A, Donè E, Pulcinelli E, Meneveri R, Tirone M, Maugeri N, Rovere-Querini P, Manfredi AA, Brunelli S. Macrophages Guard Endothelial Lineage by Hindering Endothelial-to-Mesenchymal Transition: Implications for the Pathogenesis of Systemic Sclerosis. J Immunol 2019;203:247-58. [PMID: 31127033 DOI: 10.4049/jimmunol.1800883] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
34 Kania G, Rudnik M, Distler O. Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat Rev Rheumatol 2019;15:288-302. [PMID: 30953037 DOI: 10.1038/s41584-019-0212-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
35 Beisang DJ, Smith K, Yang L, Benyumov A, Gilbertsen A, Herrera J, Lock E, Racila E, Forster C, Sandri BJ, Henke CA, Bitterman PB. Single-cell RNA sequencing reveals that lung mesenchymal progenitor cells in IPF exhibit pathological features early in their differentiation trajectory. Sci Rep 2020;10:11162. [PMID: 32636398 DOI: 10.1038/s41598-020-66630-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
36 Bhandari R, Ball MS, Martyanov V, Popovich D, Schaafsma E, Han S, ElTanbouly M, Orzechowski NM, Carns M, Arroyo E, Aren K, Hinchcliff M, Whitfield ML, Pioli PA. Profibrotic Activation of Human Macrophages in Systemic Sclerosis. Arthritis Rheumatol 2020;72:1160-9. [PMID: 32134204 DOI: 10.1002/art.41243] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
37 Yang A, Huang Y, Zhang Y, Yang K, Wang J, Liu Q. [Expression of pituitary tumor-transforming gene-1 and its pathogenic role in systemic sclerosis]. Nan Fang Yi Ke Da Xue Xue Bao 2020;40:1564-70. [PMID: 33243736 DOI: 10.12122/j.issn.1673-4254.2020.11.05] [Reference Citation Analysis]
38 Rodrigues M, Gurtner G. Black, White, and Gray: Macrophages in Skin Repair and Disease. Curr Pathobiol Rep 2017;5:333-42. [PMID: 30288366 DOI: 10.1007/s40139-017-0152-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
39 Moll M, Christmann RB, Zhang Y, Whitfield ML, Wang YM, Rice L, Stratton E, Lafyatis R, Farber HW. Patients with systemic sclerosis-associated pulmonary arterial hypertension express a genomic signature distinct from patients with interstitial lung disease. J Scleroderma Relat Disord 2018;3:242-8. [PMID: 30498788 DOI: 10.1177/2397198318764780] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
40 Taroni JN, Mahoney JM, Whitfield ML. The mechanistic implications of gene expression studies in SSc: Insights from Systems Biology. Curr Treatm Opt Rheumatol 2017;3:181-92. [PMID: 29520335 DOI: 10.1007/s40674-017-0072-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
41 Mohamed ME, Gamal RM, El-Mokhtar MA, Hassan AT, Abozaid HSM, Ghandour AM, Abdelmoez A Ismail S, A Yousef H, H El-Hakeim E, S Makarem Y, Abdellatif Awad A. Peripheral cells from patients with systemic sclerosis disease co-expressing M1 and M2 monocyte/macrophage surface markers: Relation to the degree of skin involvement. Hum Immunol 2021;82:634-9. [PMID: 34020830 DOI: 10.1016/j.humimm.2021.03.009] [Reference Citation Analysis]
42 Hinchcliff M, Toledo DM, Taroni JN, Wood TA, Franks JM, Ball MS, Hoffmann A, Amin SM, Tan AU, Tom K, Nesbeth Y, Lee J, Ma M, Aren K, Carns MA, Pioli PA, Whitfield ML. Mycophenolate Mofetil Treatment of Systemic Sclerosis Reduces Myeloid Cell Numbers and Attenuates the Inflammatory Gene Signature in Skin. J Invest Dermatol 2018;138:1301-10. [PMID: 29391252 DOI: 10.1016/j.jid.2018.01.006] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
43 Wermuth PJ, Piera-Velazquez S, Rosenbloom J, Jimenez SA. Existing and novel biomarkers for precision medicine in systemic sclerosis. Nat Rev Rheumatol 2018;14:421-32. [PMID: 29789665 DOI: 10.1038/s41584-018-0021-9] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 10.7] [Reference Citation Analysis]
44 Distler JHW, Györfi A, Ramanujam M, Whitfield ML, Königshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol 2019;15:705-30. [DOI: 10.1038/s41584-019-0322-7] [Cited by in Crossref: 103] [Cited by in F6Publishing: 99] [Article Influence: 34.3] [Reference Citation Analysis]
45 Laurent P, Sisirak V, Lazaro E, Richez C, Duffau P, Blanco P, Truchetet ME, Contin-Bordes C. Innate Immunity in Systemic Sclerosis Fibrosis: Recent Advances. Front Immunol 2018;9:1702. [PMID: 30083163 DOI: 10.3389/fimmu.2018.01702] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
46 Jung SM, Park KS, Kim KJ. Integrative analysis of lung molecular signatures reveals key drivers of systemic sclerosis-associated interstitial lung disease. Ann Rheum Dis 2021:annrheumdis-2021-220493. [PMID: 34380701 DOI: 10.1136/annrheumdis-2021-220493] [Reference Citation Analysis]
47 Tan YY, Montagnese S, Mani AR. Organ System Network Disruption Is Associated With Poor Prognosis in Patients With Chronic Liver Failure. Front Physiol 2020;11:983. [PMID: 32848892 DOI: 10.3389/fphys.2020.00983] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
48 Truchetet ME, Brembilla NC, Chizzolini C. Current Concepts on the Pathogenesis of Systemic Sclerosis. Clin Rev Allergy Immunol 2021. [PMID: 34487318 DOI: 10.1007/s12016-021-08889-8] [Reference Citation Analysis]
49 Denton CP, Wells AU, Coghlan JG. Major lung complications of systemic sclerosis. Nat Rev Rheumatol 2018;14:511-27. [DOI: 10.1038/s41584-018-0062-0] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
50 Doing G, Koeppen K, Occipinti P, Harty CE, Hogan DA. Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics. PLoS Genet 2020;16:e1008783. [PMID: 32813693 DOI: 10.1371/journal.pgen.1008783] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]