BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gasparoni G, Bultmann S, Lutsik P, Kraus TFJ, Sordon S, Vlcek J, Dietinger V, Steinmaurer M, Haider M, Mulholland CB, Arzberger T, Roeber S, Riemenschneider M, Kretzschmar HA, Giese A, Leonhardt H, Walter J. DNA methylation analysis on purified neurons and glia dissects age and Alzheimer's disease-specific changes in the human cortex. Epigenetics Chromatin 2018;11:41. [PMID: 30045751 DOI: 10.1186/s13072-018-0211-3] [Cited by in Crossref: 119] [Cited by in F6Publishing: 122] [Article Influence: 29.8] [Reference Citation Analysis]
Number Citing Articles
1 Dunnet MJ, Ortega-recalde OJ, Waters SA, Weeks RJ, Morison IM, Hore TA. Leukocyte-specific DNA methylation biomarkers and their implication for pathological epigenetic analysis. Epigenetics Commun 2022;2:5. [DOI: 10.1186/s43682-022-00011-z] [Reference Citation Analysis]
2 Sommerer Y, Dobricic V, Schilling M, Ohlei O, Bartrés-faz D, Cattaneo G, Demuth I, Düzel S, Franzenburg S, Fuß J, Lindenberger U, Pascual-leone Á, Sabet SS, Solé-padullés C, Tormos JM, Vetter VM, Wesse T, Franke A, Lill CM, Bertram L. Epigenome-Wide Association Study in Peripheral Tissues Highlights DNA Methylation Profiles Associated with Episodic Memory Performance in Humans. Biomedicines 2022;10:2798. [DOI: 10.3390/biomedicines10112798] [Reference Citation Analysis]
3 van Zundert B, Montecino M. Epigenetic Changes and Chromatin Reorganization in Brain Function: Lessons from Fear Memory Ensemble and Alzheimer’s Disease. IJMS 2022;23:12081. [DOI: 10.3390/ijms232012081] [Reference Citation Analysis]
4 Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Shireby G, Dempster EL, Policicchio S, Smith RG, Pishva E, Chioza B, Davies JP, Burrage J, Lunnon K, Seiler Vellame D, Love S, Thomas A, Brookes K, Morgan K, Francis P, Hannon E, Mill J. DNA methylation signatures of Alzheimer’s disease neuropathology in the cortex are primarily driven by variation in non-neuronal cell-types. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-33394-7] [Reference Citation Analysis]
6 Grovas-saltijeral AP, Rajkumar AP, Knight HM. Differential expression of m5C RNA methyltransferase genes NSUN6 and NSUN7 in Alzheimer’s disease and Traumatic Brain Injury.. [DOI: 10.21203/rs.3.rs-1525499/v2] [Reference Citation Analysis]
7 C. Silva T, Zhang W, Young JI, Gomez L, Schmidt MA, Varma A, Chen XS, Martin ER, Wang L. Distinct sex-specific DNA methylation differences in Alzheimer’s disease. Alz Res Therapy 2022;14:133. [DOI: 10.1186/s13195-022-01070-z] [Reference Citation Analysis]
8 Kular L, Klose D, Urdánoz-casado A, Ewing E, Planell N, Gomez-cabrero D, Needhamsen M, Jagodic M. Epigenetic clock indicates accelerated aging in glial cells of progressive multiple sclerosis patients. Front Aging Neurosci 2022;14:926468. [DOI: 10.3389/fnagi.2022.926468] [Reference Citation Analysis]
9 C Silva T, Young JI, Zhang L, Gomez L, Schmidt MA, Varma A, Chen XS, Martin ER, Wang L. Cross-tissue analysis of blood and brain epigenome-wide association studies in Alzheimer's disease. Nat Commun 2022;13:4852. [PMID: 35982059 DOI: 10.1038/s41467-022-32475-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Gao Q, Zhang Y, Sun H, Wang T. Evaluation of propensity score methods for causal inference with high-dimensional covariates. Brief Bioinform 2022;23:bbac227. [PMID: 35667004 DOI: 10.1093/bib/bbac227] [Reference Citation Analysis]
11 Zheng Y, Qi B, Gao W, Qi Z, Liu Y, Wang Y, Feng J, Cheng X, Luo Z, Li T. Macrophages-Related Genes Biomarkers in the Deterioration of Atherosclerosis. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.890321] [Reference Citation Analysis]
12 Ruffini N, Klingenberg S, Heese R, Schweiger S, Gerber S. The Big Picture of Neurodegeneration: A Meta Study to Extract the Essential Evidence on Neurodegenerative Diseases in a Network-Based Approach. Front Aging Neurosci 2022;14:866886. [DOI: 10.3389/fnagi.2022.866886] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Hou W, Li GS, Gao L, Lu HP, Zhou HF, Kong JL, Chen G, Xia S, Wei HY. SYNJ2 is a novel and potential biomarker for the prediction and treatment of cancers: from lung squamous cell carcinoma to pan-cancer. BMC Med Genomics 2022;15:114. [PMID: 35581615 DOI: 10.1186/s12920-022-01266-0] [Reference Citation Analysis]
14 Chen F, Wang N, He X. Identification of Differential Genes of DNA Methylation Associated With Alzheimer’s Disease Based on Integrated Bioinformatics and Its Diagnostic Significance. Front Aging Neurosci 2022;14:884367. [DOI: 10.3389/fnagi.2022.884367] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Wei L, Zou C, Chen L, Lin Y, Liang L, Hu B, Mao Y, Zou D. Molecular Insights and Prognosis Associated With RBM8A in Glioblastoma. Front Mol Biosci 2022;9:876603. [DOI: 10.3389/fmolb.2022.876603] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Vijayakumar K, Cho GW. Pan-Tissue methylation aging clock: Recalibrated and a method to analyze and interpret the selected features. Mech Ageing Dev 2022;:111676. [PMID: 35489615 DOI: 10.1016/j.mad.2022.111676] [Reference Citation Analysis]
17 Low JT, Chandramohan V, Bowie ML, Brown MC, Waitkus MS, Briley A, Stevenson K, Fuller R, Reitman ZJ, Muscat AM, Hariharan S, Hostettler J, Danehower S, Baker A, Khasraw M, Wong NC, Gregory S, Nair SK, Heimberger A, Gromeier M, Bigner DD, Ashley DM. Epigenetic STING silencing is developmentally conserved in gliomas and can be rescued by methyltransferase inhibition. Cancer Cell 2022:S1535-6108(22)00171-4. [PMID: 35487217 DOI: 10.1016/j.ccell.2022.04.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Silva TC, Young JI, Zhang L, Gomez L, Schmidt MA, Varma A, Chen XS, Martin ER, Wang L. Cross-tissue meta-analysis of blood and brain epigenome-wide association studies in Alzheimer’s disease.. [DOI: 10.1101/2022.04.11.22273748] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Shireby G, Dempster E, Policicchio S, Smith RG, Pishva E, Chioza B, Davies JP, Burrage J, Lunnon K, Seiler-vellame D, Love S, Thomas A, Brookes K, Morgan K, Francis P, Hannon E, Mill J. DNA methylation signatures of Alzheimer’s disease neuropathology in the cortex are primarily driven by variation in non-neuronal cell-types.. [DOI: 10.1101/2022.03.15.484508] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zhu T, Liu J, Beck S, Pan S, Capper D, Lechner M, Thirlwell C, Breeze CE, Teschendorff AE. A pan-tissue DNA methylation atlas enables in silico decomposition of human tissue methylomes at cell-type resolution. Nat Methods 2022;19:296-306. [DOI: 10.1038/s41592-022-01412-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
21 Song H, Yang J, Yu W. Promoter Hypomethylation of TGFBR3 as a Risk Factor of Alzheimer’s Disease: An Integrated Epigenomic-Transcriptomic Analysis. Front Cell Dev Biol 2022;9:825729. [DOI: 10.3389/fcell.2021.825729] [Reference Citation Analysis]
22 Silva TC, Young JI, Martin ER, Chen XS, Wang L. MethReg: estimating the regulatory potential of DNA methylation in gene transcription. Nucleic Acids Research 2022. [DOI: 10.1093/nar/gkac030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 A Gadd D, I Mcgeachan R, F Hillary R, L Mccartney D, E Harris S, A Sherwood R, Abbott NJ, R Cox S, E Marioni R. The genetic and epigenetic profile of serum S100β in the Lothian Birth Cohort 1936 and its relationship to Alzheimer’s disease. Wellcome Open Res 2021;6:306. [DOI: 10.12688/wellcomeopenres.17322.2] [Reference Citation Analysis]
24 A Gadd D, I McGeachan R, F Hillary R, L McCartney D, E Harris S, A Sherwood R, Abbott NJ, R Cox S, E Marioni R. The genetic and epigenetic profile of serum S100β in the Lothian Birth Cohort 1936 and its relationship to Alzheimer's disease. Wellcome Open Res 2021;6:306. [PMID: 35028426 DOI: 10.12688/wellcomeopenres.17322.1] [Reference Citation Analysis]
25 Rabaneda-Bueno R, Mena-Montes B, Torres-Castro S, Torres-Carrillo N, Torres-Carrillo NM. Advances in Genetics and Epigenetic Alterations in Alzheimer's Disease: A Notion for Therapeutic Treatment. Genes (Basel) 2021;12:1959. [PMID: 34946908 DOI: 10.3390/genes12121959] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Shchukina I, Bagaitkar J, Shpynov O, Loginicheva E, Porter S, Mogilenko DA, Wolin E, Collins P, Demidov G, Artomov M, Zaitsev K, Sidorov S, Camell C, Bambouskova M, Arthur L, Swain A, Panteleeva A, Dievskii A, Kurbatsky E, Tsurinov P, Chernyatchik R, Dixit VD, Jovanovic M, Stewart SA, Daly MJ, Dmitriev S, Oltz EM, Artyomov MN. Enhanced epigenetic profiling of classical human monocytes reveals a specific signature of healthy aging in the DNA methylome. Nat Aging 2021;1:124-41. [PMID: 34796338 DOI: 10.1038/s43587-020-00002-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
27 Giles KA, Phipps AJ, Cashion JM, Huskins SN, Mercer TR, Robinson MD, Woodhouse A, Taberlay PC. H3K4me3 enrichment defines neuronal age, while a youthful H3K27ac signature is recapitulated in aged neurons.. [DOI: 10.1101/2021.11.11.467877] [Reference Citation Analysis]
28 Zimmer-Bensch G, Zempel H. DNA Methylation in Genetic and Sporadic Forms of Neurodegeneration: Lessons from Alzheimer's, Related Tauopathies and Genetic Tauopathies. Cells 2021;10:3064. [PMID: 34831288 DOI: 10.3390/cells10113064] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Gao Q, Zhang Y, Liang J, Sun H, Wang T. High-dimensional generalized propensity score with application to omics data. Brief Bioinform 2021;22:bbab331. [PMID: 34410351 DOI: 10.1093/bib/bbab331] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Li QS, Vasanthakumar A, Davis JW, Idler KB, Nho K, Waring JF, Saykin AJ; Alzheimer’s Disease Neuroimaging Initiative (ADNI). Association of peripheral blood DNA methylation level with Alzheimer's disease progression. Clin Epigenetics 2021;13:191. [PMID: 34654479 DOI: 10.1186/s13148-021-01179-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
31 Pant M, Dan S, Pant S, Raj A, Upadhyay SK. Progression in Alzheimer’s Disease Correlates With Epigenetics and Cerebral Formaldehyde: From Potential Hereditary Mechanism and Environmental Factors to Therapeutic Measures. Curr Pharmacol Rep 2021;7:187-205. [DOI: 10.1007/s40495-021-00265-6] [Reference Citation Analysis]
32 Iatrou A, Clark EM, Wang Y. Nuclear dynamics and stress responses in Alzheimer's disease. Mol Neurodegener 2021;16:65. [PMID: 34535174 DOI: 10.1186/s13024-021-00489-6] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
33 Singh O, Pratt D, Aldape K. Immune cell deconvolution of bulk DNA methylation data reveals an association with methylation class, key somatic alterations, and cell state in glial/glioneuronal tumors. Acta Neuropathol Commun 2021;9:148. [PMID: 34496929 DOI: 10.1186/s40478-021-01249-9] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
34 Pan G, King A, Wu F, Simpson-Yap S, Woodhouse A, Phipps A, Vickers JC. The potential roles of genetic factors in predicting ageing-related cognitive change and Alzheimer's disease. Ageing Res Rev 2021;70:101402. [PMID: 34242808 DOI: 10.1016/j.arr.2021.101402] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
35 Barrera J, Song L, Gamache JE, Garrett ME, Safi A, Yun Y, Premasinghe I, Sprague D, Chipman D, Li J, Fradin H, Soldano K, Gordân R, Ashley-Koch AE, Crawford GE, Chiba-Falek O. Sex dependent glial-specific changes in the chromatin accessibility landscape in late-onset Alzheimer's disease brains. Mol Neurodegener 2021;16:58. [PMID: 34429139 DOI: 10.1186/s13024-021-00481-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 van den Hove DLA, Riemens RJM, Koulousakis P, Pishva E. Epigenome-wide association studies in Alzheimer's disease; achievements and challenges. Brain Pathol 2020;30:978-83. [PMID: 32654262 DOI: 10.1111/bpa.12880] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
37 Ibanez L, Cruchaga C, Fernández MV. Advances in Genetic and Molecular Understanding of Alzheimer's Disease. Genes (Basel) 2021;12:1247. [PMID: 34440421 DOI: 10.3390/genes12081247] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
38 Malta TM, Sabedot TS, Datta I, Garofano L, Vallentgoed W, Varn FS, Aldape K, D’angelo F, Bakas S, Barnholtz-sloan JS, Gan HK, Hasanain M, Hau A, Johnson KC, Khasraw M, Kocakavuk E, Kouwenhoven MC, Migliozzi S, Niclou SP, Niers JM, Ormond DR, Paek SH, Reifenberger G, Sillevis Smitt PA, Smits M, Stead LF, van den Bent MJ, Van Meir EG, Walenkamp A, Weiss T, Weller M, Westerman BA, Ylstra B, Wesseling P, Lasorella A, French PJ, Poisson LM, Verhaak RG, Iavarone A, Noushmehr H, The GLASS Consortium. The epigenetic evolution of gliomas is determined by their IDH1 mutation status and treatment regimen.. [DOI: 10.1101/2021.08.09.455687] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Tomiga Y, Sakai K, Ra SG, Kusano M, Ito A, Uehara Y, Takahashi H, Kawanaka K, Soejima H, Higaki Y. Short-term running exercise alters DNA methylation patterns in neuronal nitric oxide synthase and brain-derived neurotrophic factor genes in the mouse hippocampus and reduces anxiety-like behaviors. FASEB J 2021;35:e21767. [PMID: 34325488 DOI: 10.1096/fj.202100630R] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
40 Murthy M, Cheng YY, Holton JL, Bettencourt C. Neurodegenerative movement disorders: An epigenetics perspective and promise for the future. Neuropathol Appl Neurobiol 2021. [PMID: 34318515 DOI: 10.1111/nan.12757] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
41 Stevens SR, Longley CM, Ogawa Y, Teliska LH, Arumanayagam AS, Nair S, Oses-Prieto JA, Burlingame AL, Cykowski MD, Xue M, Rasband MN. Ankyrin-R regulates fast-spiking interneuron excitability through perineuronal nets and Kv3.1b K+ channels. Elife 2021;10:e66491. [PMID: 34180393 DOI: 10.7554/eLife.66491] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
42 Zocher S, Overall RW, Lesche M, Dahl A, Kempermann G. Environmental enrichment preserves a young DNA methylation landscape in the aged mouse hippocampus. Nat Commun 2021;12:3892. [PMID: 34162876 DOI: 10.1038/s41467-021-23993-1] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
43 Sharma VK, Mehta V, Singh TG. Alzheimer's Disorder: Epigenetic Connection and Associated Risk Factors. Curr Neuropharmacol 2020;18:740-53. [PMID: 31989902 DOI: 10.2174/1570159X18666200128125641] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 22.0] [Reference Citation Analysis]
44 Smith RG, Pishva E, Shireby G, Smith AR, Roubroeks JAY, Hannon E, Wheildon G, Mastroeni D, Gasparoni G, Riemenschneider M, Giese A, Sharp AJ, Schalkwyk L, Haroutunian V, Viechtbauer W, van den Hove DLA, Weedon M, Brokaw D, Francis PT, Thomas AJ, Love S, Morgan K, Walter J, Coleman PD, Bennett DA, De Jager PL, Mill J, Lunnon K. A meta-analysis of epigenome-wide association studies in Alzheimer's disease highlights novel differentially methylated loci across cortex. Nat Commun 2021;12:3517. [PMID: 34112773 DOI: 10.1038/s41467-021-23243-4] [Cited by in Crossref: 15] [Cited by in F6Publishing: 21] [Article Influence: 15.0] [Reference Citation Analysis]
45 Coppedè F. Epigenetic regulation in Alzheimer's disease: is it a potential therapeutic target? Expert Opin Ther Targets 2021;25:283-98. [PMID: 33843425 DOI: 10.1080/14728222.2021.1916469] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
46 Garcia-Ruiz B, de Moura MC, Muntané G, Martorell L, Bosch E, Esteller M, J Canales-Rodríguez E, Pomarol-Clotet E, Jiménez E, Vieta E, Vilella E. DDR1 methylation is associated with bipolar disorder and the isoform expression and methylation of myelin genes. Epigenomics 2021;13:845-58. [PMID: 33942629 DOI: 10.2217/epi-2021-0006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Aichmüller CF, Iskar M, Jones DTW, Korshunov A, Radlwimmer B, Kool M, Ernst A, Pfister SM, Lichter P, Zapatka M. Pilocytic astrocytoma demethylation and transcriptional landscapes link bZIP transcription factors to immune response. Neuro Oncol 2020;22:1327-38. [PMID: 32052037 DOI: 10.1093/neuonc/noaa035] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
48 Oh ES, Petronis A. Origins of human disease: the chrono-epigenetic perspective. Nat Rev Genet 2021;22:533-46. [PMID: 33903745 DOI: 10.1038/s41576-021-00348-6] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
49 Zhang L, Young JI, Gomez L, Silva TC, Schmidt MA, Cai J, Chen X, Martin ER, Wang L. Sex-specific DNA methylation differences in Alzheimer's disease pathology. Acta Neuropathol Commun 2021;9:77. [PMID: 33902726 DOI: 10.1186/s40478-021-01177-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
50 Carlyle BC, Kandigian SE, Kreuzer J, Das S, Trombetta BA, Kuo Y, Bennett DA, Schneider JA, Petyuk VA, Kitchen RR, Morris R, Nairn AC, Hyman BT, Haas W, Arnold SE. Synaptic proteins associated with cognitive performance and neuropathology in older humans revealed by multiplexed fractionated proteomics. Neurobiol Aging 2021;105:99-114. [PMID: 34052751 DOI: 10.1016/j.neurobiolaging.2021.04.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
51 Barrera J, Song L, Safi A, Yun Y, Garrett ME, Gamache J, Premasinghe I, Sprague D, Chipman D, Li J, Fradin H, Soldano K, Gordân R, Ashley-koch AE, Crawford GE, Chiba-falek O. Sex dependent glial-specific changes in the chromatin accessibility landscape in late-onset Alzheimer’s disease brains.. [DOI: 10.1101/2021.04.07.438835] [Reference Citation Analysis]
52 Ithal D, Sukumaran SK, Bhattacharjee D, Vemula A, Nadella R, Mahadevan J, Sud R, Viswanath B, Purushottam M, Jain S. Exome hits demystified: The next frontier. Asian J Psychiatr 2021;59:102640. [PMID: 33892377 DOI: 10.1016/j.ajp.2021.102640] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
53 Kuehner JN, Chen J, Bruggeman EC, Wang F, Li Y, Xu C, McEachin ZT, Li Z, Chen L, Hales CM, Wen Z, Yang J, Yao B. 5-hydroxymethylcytosine is dynamically regulated during forebrain organoid development and aberrantly altered in Alzheimer's disease. Cell Rep 2021;35:109042. [PMID: 33910000 DOI: 10.1016/j.celrep.2021.109042] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
54 Pellegrini C, Pirazzini C, Sala C, Sambati L, Yusipov I, Kalyakulina A, Ravaioli F, Kwiatkowska KM, Durso DF, Ivanchenko M, Monti D, Lodi R, Franceschi C, Cortelli P, Garagnani P, Bacalini MG. A Meta-Analysis of Brain DNA Methylation Across Sex, Age, and Alzheimer's Disease Points for Accelerated Epigenetic Aging in Neurodegeneration. Front Aging Neurosci 2021;13:639428. [PMID: 33790779 DOI: 10.3389/fnagi.2021.639428] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
55 Zhang L, Young JI, Gomez L, Silva TC, Schmidt MA, Cai J, Chen X, Martin ER, Wang L. Sex-specific DNA methylation changes in Alzheimer’s disease pathology.. [DOI: 10.1101/2021.03.01.21252029] [Reference Citation Analysis]
56 Ando K, Erneux C, Homa M, Houben S, de Fisenne MA, Brion JP, Leroy K. Dysregulation of Phosphoinositide 5-Phosphatases and Phosphoinositides in Alzheimer's Disease. Front Neurosci 2021;15:614855. [PMID: 33716646 DOI: 10.3389/fnins.2021.614855] [Reference Citation Analysis]
57 Silva TC, Young JI, Martin ER, Chen X, Wang L. MethReg: estimating the regulatory potential of DNA methylation in gene transcription.. [DOI: 10.1101/2021.02.18.431696] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Higgins-Chen AT, Thrush KL, Levine ME. Aging biomarkers and the brain. Semin Cell Dev Biol 2021;116:180-93. [PMID: 33509689 DOI: 10.1016/j.semcdb.2021.01.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
59 Stevens SR, Rasband MN. Ankyrins and neurological disease. Curr Opin Neurobiol 2021;69:51-7. [PMID: 33485190 DOI: 10.1016/j.conb.2021.01.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
60 Stevens SR, Longley CM, Ogawa Y, Teliska LH, Arumanayagam AS, Nair S, Oses-prieto JA, Burlingame AL, Cykowski MD, Xue M, Rasband MN. Ankyrin-R regulates fast-spiking interneuron excitability through perineuronal nets and Kv3.1b K+ channels.. [DOI: 10.1101/2021.01.21.427626] [Reference Citation Analysis]
61 Bendl J, Hauberg ME, Girdhar K, Im E, Vicari JM, Rahman S, Dong P, Misir R, Kleopoulos SP, Reach SM, Apontes P, Zeng B, Zhang W, Voloudakis G, Nixon RA, Haroutunian V, Hoffman GE, Fullard JF, Roussos P. The three-dimensional landscape of chromatin accessibility in Alzheimer’s disease.. [DOI: 10.1101/2021.01.11.426303] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
62 Abu Hamdeh S, Ciuculete DM, Sarkisyan D, Bakalkin G, Ingelsson M, Schiöth HB, Marklund N. Differential DNA Methylation of the Genes for Amyloid Precursor Protein, Tau, and Neurofilaments in Human Traumatic Brain Injury. J Neurotrauma 2021;38:1679-88. [PMID: 33191850 DOI: 10.1089/neu.2020.7283] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
63 Kressler C, Gasparoni G, Nordström K, Hamo D, Salhab A, Dimitropoulos C, Tierling S, Reinke P, Volk HD, Walter J, Hamann A, Polansky JK. Targeted De-Methylation of the FOXP3-TSDR Is Sufficient to Induce Physiological FOXP3 Expression but Not a Functional Treg Phenotype. Front Immunol 2020;11:609891. [PMID: 33488615 DOI: 10.3389/fimmu.2020.609891] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
64 Walker RM, Vaher K, Bermingham ML, Morris SW, Bretherick AD, Zeng Y, Rawlik K, Amador C, Campbell A, Haley CS, Hayward C, Porteous DJ, McIntosh AM, Marioni RE, Evans KL. Identification of epigenome-wide DNA methylation differences between carriers of APOE ε4 and APOE ε2 alleles. Genome Med 2021;13:1. [PMID: 33397400 DOI: 10.1186/s13073-020-00808-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
65 Korda Z, Pishva E, van den Hove DLA. Epigenetics in Drug Discovery: Achievements and Challenges. Modern CNS Drug Discovery 2021. [DOI: 10.1007/978-3-030-62351-7_4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Li Y, Xu I, Liu C. Functional Data Modeling and Hypothesis Testing for Longitudinal Alzheimer Genome-Wide Association Studies. Emerging Topics in Statistics and Biostatistics 2021. [DOI: 10.1007/978-3-030-72437-5_16] [Reference Citation Analysis]
67 Stoccoro A, Coppedè F. Epigenetics and cognitive disorders. Epigenetics in Psychiatry 2021. [DOI: 10.1016/b978-0-12-823577-5.00032-5] [Reference Citation Analysis]
68 Qin L, Xu Q, Li Z, Chen L, Li Y, Yang N, Liu Z, Guo J, Shen L, Allen EG, Chen C, Ma C, Wu H, Zhu X, Jin P, Tang B. Ethnicity-specific and overlapping alterations of brain hydroxymethylome in Alzheimer's disease. Hum Mol Genet 2020;29:149-58. [PMID: 31814020 DOI: 10.1093/hmg/ddz273] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
69 Wang Q, Chen Y, Readhead B, Chen K, Su Y, Reiman EM, Dudley JT. Longitudinal data in peripheral blood confirm that PM20D1 is a quantitative trait locus (QTL) for Alzheimer's disease and implicate its dynamic role in disease progression. Clin Epigenetics 2020;12:189. [PMID: 33298155 DOI: 10.1186/s13148-020-00984-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
70 Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic Biol Med 2021;170:19-33. [PMID: 33307166 DOI: 10.1016/j.freeradbiomed.2020.12.002] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
71 Pellegrini C, Pirazzini C, Sala C, Sambati L, Yusipov I, Kalyakulina A, Ravaioli F, Kwiatkowska K, Durso D, Ivanchencko M, Monti D, Lodi R, Franceschi C, Cortelli P, Garagnani P, Bacalini M. A meta-analysis of brain DNA methylation across sex, age and Alzheimer’s disease points for accelerated epigenetic aging in neurodegeneration.. [DOI: 10.1101/2020.11.25.20238360] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
72 Zhang L, Silva TC, Young JI, Gomez L, Schmidt MA, Hamilton-Nelson KL, Kunkle BW, Chen X, Martin ER, Wang L. Epigenome-wide meta-analysis of DNA methylation differences in prefrontal cortex implicates the immune processes in Alzheimer's disease. Nat Commun 2020;11:6114. [PMID: 33257653 DOI: 10.1038/s41467-020-19791-w] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
73 Lv L, Zhang D, Hua P, Yang S. The glial-specific hypermethylated 3' untranslated region of histone deacetylase 1 may modulates several signal pathways in Alzheimer's disease. Life Sci 2021;265:118760. [PMID: 33212149 DOI: 10.1016/j.lfs.2020.118760] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
74 Gahlaut V, Zinta G, Jaiswal V, Kumar S. Quantitative Epigenetics: A New Avenue for Crop Improvement. Epigenomes 2020;4:25. [DOI: 10.3390/epigenomes4040025] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 9.5] [Reference Citation Analysis]
75 Li Z, Guo Z, Cheng Y, Jin P, Wu H. Robust partial reference-free cell composition estimation from tissue expression. Bioinformatics 2020;36:3431-8. [PMID: 32167531 DOI: 10.1093/bioinformatics/btaa184] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
76 Li QS, Sun Y, Wang T. Epigenome-wide association study of Alzheimer's disease replicates 22 differentially methylated positions and 30 differentially methylated regions. Clin Epigenetics 2020;12:149. [PMID: 33069246 DOI: 10.1186/s13148-020-00944-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
77 Zhang Y, Zhang Z, Li L, Xu K, Ma Z, Chow HM, Herrup K, Li J. Selective loss of 5hmC promotes neurodegeneration in the mouse model of Alzheimer's disease. FASEB J 2020;34:16364-82. [PMID: 33058355 DOI: 10.1096/fj.202001271R] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
78 Mansuri MS, Peng G, Wilson RS, Lam TT, Zhao H, Williams KR, Nairn AC. Differential Protein Expression in Striatal D1- and D2-Dopamine Receptor-Expressing Medium Spiny Neurons. Proteomes 2020;8:27. [PMID: 33066078 DOI: 10.3390/proteomes8040027] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
79 Wei X, Zhang L, Zeng Y. DNA methylation in Alzheimer’s disease: In brain and peripheral blood. Mechanisms of Ageing and Development 2020;191:111319. [DOI: 10.1016/j.mad.2020.111319] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
80 Smith AR, Wheildon G, Lunnon K. Invited Review – A 5‐year update on epigenome‐wide association studies of DNA modifications in Alzheimer’s disease: progress, practicalities and promise. Neuropathol Appl Neurobiol 2020;46:641-53. [DOI: 10.1111/nan.12650] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
81 Ma D, Fetahu IS, Wang M, Fang R, Li J, Liu H, Gramyk T, Iwanicki I, Gu S, Xu W, Tan L, Wu F, Shi YG. The fusiform gyrus exhibits an epigenetic signature for Alzheimer's disease. Clin Epigenetics 2020;12:129. [PMID: 32854783 DOI: 10.1186/s13148-020-00916-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
82 Walker RM, Bermingham ML, Vaher K, Morris SW, Clarke TK, Bretherick AD, Zeng Y, Amador C, Rawlik K, Pandya K, Hayward C, Campbell A, Porteous DJ, McIntosh AM, Marioni RE, Evans KL. Epigenome-wide analyses identify DNA methylation signatures of dementia risk. Alzheimers Dement (Amst) 2020;12:e12078. [PMID: 32789163 DOI: 10.1002/dad2.12078] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
83 Macbean LF, Smith AR, Lunnon K. Exploring Beyond the DNA Sequence: A Review of Epigenomic Studies of DNA and Histone Modifications in Dementia. Curr Genet Med Rep 2020;8:79-92. [DOI: 10.1007/s40142-020-00190-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
84 Roubroeks JAY, Smith AR, Smith RG, Pishva E, Ibrahim Z, Sattlecker M, Hannon EJ, Kłoszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Wahlund LO, Aarsland D, Proitsi P, Hodges A, Lovestone S, Newhouse SJ, Dobson RJB, Mill J, van den Hove DLA, Lunnon K. An epigenome-wide association study of Alzheimer's disease blood highlights robust DNA hypermethylation in the HOXB6 gene. Neurobiol Aging 2020;95:26-45. [PMID: 32745807 DOI: 10.1016/j.neurobiolaging.2020.06.023] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 13.0] [Reference Citation Analysis]
85 Lupo G, Gaetani S, Cacci E, Biagioni S, Negri R. Molecular Signatures of the Aging Brain: Finding the Links Between Genes and Phenotypes. Neurotherapeutics 2019;16:543-53. [PMID: 31161490 DOI: 10.1007/s13311-019-00743-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
86 Armstrong MJ, Jin Y, Allen EG, Jin P. Diverse and dynamic DNA modifications in brain and diseases. Hum Mol Genet 2019;28:R241-53. [PMID: 31348493 DOI: 10.1093/hmg/ddz179] [Cited by in Crossref: 11] [Cited by in F6Publishing: 17] [Article Influence: 5.5] [Reference Citation Analysis]
87 Chouliaras L, Kumar GS, Thomas AJ, Lunnon K, Chinnery PF, O'Brien JT. Epigenetic regulation in the pathophysiology of Lewy body dementia. Prog Neurobiol 2020;192:101822. [PMID: 32407744 DOI: 10.1016/j.pneurobio.2020.101822] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
88 Shchukina I, Bagaitkar J, Shpynov O, Loginicheva E, Porter S, Mogilenko DA, Wolin E, Collins P, Demidov G, Artomov M, Zaitsev K, Sidorov S, Camell C, Bambouskova M, Arthur L, Swain A, Panteleeva A, Dievskii A, Kurbatsky E, Tsurinov P, Chernyatchik R, Dixit VD, Jovanovic M, Stewart SA, Daly MJ, Dmitriev S, Oltz EM, Artyomov MN. Epigenetic aging of classical monocytes from healthy individuals.. [DOI: 10.1101/2020.05.10.087023] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
89 Walker RM, Bermingham ML, Vaher K, Morris SW, Clarke T, Bretherick AD, Zeng Y, Amador C, Rawlik K, Pandya K, Hayward C, Campbell A, Porteous DJ, Mcintosh AM, Marioni RE, Evans KL. Epigenome-wide analyses identify DNA methylation signatures of dementia risk.. [DOI: 10.1101/2020.04.06.20055517] [Reference Citation Analysis]
90 Rydbirk R, Folke J, Busato F, Roché E, Chauhan AS, Løkkegaard A, Hejl AM, Bode M, Blaabjerg M, Møller M, Danielsen EH, Brudek T, Pakkenberg B, Tost J, Aznar S. Epigenetic modulation of AREL1 and increased HLA expression in brains of multiple system atrophy patients. Acta Neuropathol Commun 2020;8:29. [PMID: 32151281 DOI: 10.1186/s40478-020-00908-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
91 Smith SM, Elliott LT, Alfaro-Almagro F, McCarthy P, Nichols TE, Douaud G, Miller KL. Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations. Elife 2020;9:e52677. [PMID: 32134384 DOI: 10.7554/eLife.52677] [Cited by in Crossref: 70] [Cited by in F6Publishing: 76] [Article Influence: 35.0] [Reference Citation Analysis]
92 Merid SK, Novoloaca A, Sharp GC, Küpers LK, Kho AT, Roy R, Gao L, Annesi-Maesano I, Jain P, Plusquin M, Kogevinas M, Allard C, Vehmeijer FO, Kazmi N, Salas LA, Rezwan FI, Zhang H, Sebert S, Czamara D, Rifas-Shiman SL, Melton PE, Lawlor DA, Pershagen G, Breton CV, Huen K, Baiz N, Gagliardi L, Nawrot TS, Corpeleijn E, Perron P, Duijts L, Nohr EA, Bustamante M, Ewart SL, Karmaus W, Zhao S, Page CM, Herceg Z, Jarvelin MR, Lahti J, Baccarelli AA, Anderson D, Kachroo P, Relton CL, Bergström A, Eskenazi B, Soomro MH, Vineis P, Snieder H, Bouchard L, Jaddoe VW, Sørensen TIA, Vrijheid M, Arshad SH, Holloway JW, Håberg SE, Magnus P, Dwyer T, Binder EB, DeMeo DL, Vonk JM, Newnham J, Tantisira KG, Kull I, Wiemels JL, Heude B, Sunyer J, Nystad W, Munthe-Kaas MC, Räikkönen K, Oken E, Huang RC, Weiss ST, Antó JM, Bousquet J, Kumar A, Söderhäll C, Almqvist C, Cardenas A, Gruzieva O, Xu CJ, Reese SE, Kere J, Brodin P, Solomon O, Wielscher M, Holland N, Ghantous A, Hivert MF, Felix JF, Koppelman GH, London SJ, Melén E. Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age. Genome Med 2020;12:25. [PMID: 32114984 DOI: 10.1186/s13073-020-0716-9] [Cited by in Crossref: 49] [Cited by in F6Publishing: 49] [Article Influence: 24.5] [Reference Citation Analysis]
93 Smith RG, Pishva E, Shireby G, Smith AR, Roubroeks JA, Hannon E, Wheildon G, Mastroeni D, Gasparoni G, Riemenschneider M, Giese A, Sharp AJ, Schalkwyk L, Haroutunian V, Viechtbauer W, van den Hove DL, Weedon M, Brokaw D, Francis PT, Thomas AJ, Love S, Morgan K, Walter J, Coleman PD, Bennett DA, De Jager PL, Mill J, Lunnon K. A meta-analysis of epigenome-wide association studies in Alzheimer’s disease highlights novel differentially methylated loci across cortex.. [DOI: 10.1101/2020.02.28.957894] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
94 Schlachetzki JCM, Toda T, Mertens J. When function follows form: Nuclear compartment structure and the epigenetic landscape of the aging neuron. Exp Gerontol 2020;133:110876. [PMID: 32068088 DOI: 10.1016/j.exger.2020.110876] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
95 Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, Zhou J, Yan R, Vanmechelen E, De Vos A, Nisticò R, Corbo M, Imbimbo BP, Streffer J, Voytyuk I, Timmers M, Tahami Monfared AA, Irizarry M, Albala B, Koyama A, Watanabe N, Kimura T, Yarenis L, Lista S, Kramer L, Vergallo A. The β-Secretase BACE1 in Alzheimer's Disease. Biol Psychiatry 2021;89:745-56. [PMID: 32223911 DOI: 10.1016/j.biopsych.2020.02.001] [Cited by in Crossref: 136] [Cited by in F6Publishing: 101] [Article Influence: 68.0] [Reference Citation Analysis]
96 Arthur-Farraj P, Moyon S. DNA methylation in Schwann cells and in oligodendrocytes. Glia 2020;68:1568-83. [PMID: 31958184 DOI: 10.1002/glia.23784] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
97 Fossel M. A unified model of dementias and age-related neurodegeneration. Alzheimers Dement 2020;16:365-83. [PMID: 31943780 DOI: 10.1002/alz.12012] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
98 Khorkova O, Hsiao J, Wahlestedt C. Epigenomics of neurological disorders. Rosenberg's Molecular and Genetic Basis of Neurological and Psychiatric Disease 2020. [DOI: 10.1016/b978-0-12-813955-4.00003-9] [Reference Citation Analysis]
99 Coppedè F. Methylation analysis of DNA in Alzheimer's disease. Genetics, Neurology, Behavior, and Diet in Dementia. Elsevier; 2020. pp. 261-74. [DOI: 10.1016/b978-0-12-815868-5.00017-7] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
100 Berger TC, Vigeland MD, Hjorthaug HS, Etholm L, Nome CG, Taubøll E, Heuser K, Selmer KK. Neuronal and glial DNA methylation and gene expression changes in early epileptogenesis. PLoS One 2019;14:e0226575. [PMID: 31887157 DOI: 10.1371/journal.pone.0226575] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
101 Eckert MA, Vaden KI Jr, Dubno JR. Age-Related Hearing Loss Associations With Changes in Brain Morphology. Trends Hear 2019;23:2331216519857267. [PMID: 31213143 DOI: 10.1177/2331216519857267] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 5.7] [Reference Citation Analysis]
102 Lardenoije R, Roubroeks JAY, Pishva E, Leber M, Wagner H, Iatrou A, Smith AR, Smith RG, Eijssen LMT, Kleineidam L, Kawalia A, Hoffmann P, Luck T, Riedel-Heller S, Jessen F, Maier W, Wagner M, Hurlemann R, Kenis G, Ali M, Del Sol A, Mastroeni D, Delvaux E, Coleman PD, Mill J, Rutten BPF, Lunnon K, Ramirez A, van den Hove DLA. Alzheimer's disease-associated (hydroxy)methylomic changes in the brain and blood. Clin Epigenetics 2019;11:164. [PMID: 31775875 DOI: 10.1186/s13148-019-0755-5] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 17.0] [Reference Citation Analysis]
103 Walker RM, Vaher K, Bermingham ML, Morris SW, Bretherick AD, Zeng Y, Rawlik K, Amador C, Campbell A, Haley CS, Hayward C, Porteous DJ, Mcintosh AM, Marioni RE, Evans KL. Identification of epigenome-wide DNA methylation differences between carriers of APOE ε4 and APOE ε2.. [DOI: 10.1101/815035] [Reference Citation Analysis]
104 Smith SM, Elliott LT, Alfaro-almagro F, Mccarthy P, Nichols TE, Douaud G, Miller KL. Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations.. [DOI: 10.1101/802686] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
105 Zocher S, Overall RW, Lesche M, Dahl A, Kempermann G. Epigenetic rejuvenation of the hippocampus by environmental enrichment.. [DOI: 10.1101/776310] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
106 Li Z, Wu H. TOAST: improving reference-free cell composition estimation by cross-cell type differential analysis. Genome Biol 2019;20:190. [PMID: 31484546 DOI: 10.1186/s13059-019-1778-0] [Cited by in Crossref: 25] [Cited by in F6Publishing: 31] [Article Influence: 8.3] [Reference Citation Analysis]
107 Liu Y, Wang M, Marcora EM, Zhang B, Goate AM. Promoter DNA hypermethylation - Implications for Alzheimer's disease. Neurosci Lett 2019;711:134403. [PMID: 31351091 DOI: 10.1016/j.neulet.2019.134403] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
108 Li P, Marshall L, Oh G, Jakubowski JL, Groot D, He Y, Wang T, Petronis A, Labrie V. Epigenetic dysregulation of enhancers in neurons is associated with Alzheimer's disease pathology and cognitive symptoms. Nat Commun 2019;10:2246. [PMID: 31113950 DOI: 10.1038/s41467-019-10101-7] [Cited by in Crossref: 100] [Cited by in F6Publishing: 114] [Article Influence: 33.3] [Reference Citation Analysis]
109 Esposito M, Sherr GL. Epigenetic Modifications in Alzheimer's Neuropathology and Therapeutics. Front Neurosci 2019;13:476. [PMID: 31133796 DOI: 10.3389/fnins.2019.00476] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 10.7] [Reference Citation Analysis]
110 Inoue T, Saito S, Tanaka M, Yamakage H, Kusakabe T, Shimatsu A, Ihara M, Satoh-Asahara N. Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy. Proc Natl Acad Sci U S A 2019;116:10031-8. [PMID: 31036637 DOI: 10.1073/pnas.1901659116] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
111 Wang F, Chen D, Wu P, Klein C, Jin C. Formaldehyde, Epigenetics, and Alzheimer's Disease. Chem Res Toxicol 2019;32:820-30. [PMID: 30964647 DOI: 10.1021/acs.chemrestox.9b00090] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
112 Dyer M, Phipps AJ, Mitew S, Taberlay PC, Woodhouse A. Age, but Not Amyloidosis, Induced Changes in Global Levels of Histone Modifications in Susceptible and Disease-Resistant Neurons in Alzheimer's Disease Model Mice. Front Aging Neurosci 2019;11:68. [PMID: 31001106 DOI: 10.3389/fnagi.2019.00068] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
113 Semick SA, Bharadwaj RA, Collado-Torres L, Tao R, Shin JH, Deep-Soboslay A, Weiss JR, Weinberger DR, Hyde TM, Kleinman JE, Jaffe AE, Mattay VS. Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer's disease. Acta Neuropathol 2019;137:557-69. [PMID: 30712078 DOI: 10.1007/s00401-019-01966-5] [Cited by in Crossref: 38] [Cited by in F6Publishing: 29] [Article Influence: 12.7] [Reference Citation Analysis]
114 Rossetti MF, Schumacher R, Lazzarino GP, Gomez AL, Varayoud J, Ramos JG. The impact of sensory and motor enrichment on the epigenetic control of steroidogenic-related genes in rat hippocampus. Molecular and Cellular Endocrinology 2019;485:44-53. [DOI: 10.1016/j.mce.2019.01.025] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
115 Smith AR, Smith RG, Pishva E, Hannon E, Roubroeks JAY, Burrage J, Troakes C, Al-Sarraj S, Sloan C, Mill J, van den Hove DL, Lunnon K. Parallel profiling of DNA methylation and hydroxymethylation highlights neuropathology-associated epigenetic variation in Alzheimer's disease. Clin Epigenetics 2019;11:52. [PMID: 30898171 DOI: 10.1186/s13148-019-0636-y] [Cited by in Crossref: 54] [Cited by in F6Publishing: 57] [Article Influence: 18.0] [Reference Citation Analysis]
116 Liguori M, Nuzziello N, Simone M, Amoroso N, Viterbo RG, Tangaro S, Consiglio A, Giordano P, Bellotti R, Trojano M. Association between miRNAs expression and cognitive performances of Pediatric Multiple Sclerosis patients: A pilot study. Brain Behav 2019;9:e01199. [PMID: 30656857 DOI: 10.1002/brb3.1199] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 5.0] [Reference Citation Analysis]
117 Castanho I, Lunnon K. Epigenetic processes in Alzheimer's disease. Chromatin Signaling and Neurological Disorders 2019. [DOI: 10.1016/b978-0-12-813796-3.00008-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
118 Liu X, Jiao B, Shen L. The Epigenetics of Alzheimer's Disease: Factors and Therapeutic Implications. Front Genet 2018;9:579. [PMID: 30555513 DOI: 10.3389/fgene.2018.00579] [Cited by in Crossref: 62] [Cited by in F6Publishing: 69] [Article Influence: 15.5] [Reference Citation Analysis]
119 Semick SA, Bharadwaj RA, Collado-torres L, Tao R, Shin JH, Deep-soboslay A, Weiss J, Weinberger DR, Hyde TM, Kleinman JE, Jaffe AE, Mattay VS. Integrated DNA methylation and gene expression profiling across multiple brain regions implicate novel genes in Alzheimer’s disease.. [DOI: 10.1101/430603] [Reference Citation Analysis]