BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, Klukovich R, Xie Y, Tang C, Yan W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 2018;11:8. [PMID: 29482626 DOI: 10.1186/s13072-018-0178-0] [Cited by in Crossref: 80] [Cited by in F6Publishing: 92] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Perera BPU, Morgan RK, Polemi KM, Sala-Hamrick KE, Svoboda LK, Dolinoy DC. PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences. Curr Environ Health Rep 2022. [PMID: 35917009 DOI: 10.1007/s40572-022-00372-6] [Reference Citation Analysis]
2 Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022. [PMID: 35876266 DOI: 10.1021/acs.chemrestox.1c00445] [Reference Citation Analysis]
3 Weyrich A, Guerrero-Altamirano TP, Yasar S, Czirják GÁ, Wachter B, Fickel J. First Steps towards the Development of Epigenetic Biomarkers in Female Cheetahs (Acinonyx jubatus). Life (Basel) 2022;12:920. [PMID: 35743950 DOI: 10.3390/life12060920] [Reference Citation Analysis]
4 Bendayan M, Caceres L, Saïs E, Swierkowski-Blanchard N, Alter L, Bonnet-Garnier A, Boitrelle F. Human Sperm Morphology as a Marker of Its Nuclear Quality and Epigenetic Pattern. Cells 2022;11:1788. [PMID: 35681482 DOI: 10.3390/cells11111788] [Reference Citation Analysis]
5 Chao H, Ma H, Sun J, Yuan S, Dong P, Zhao A, Li L, Shen W, Zhang X. Whole-Transcriptome Analysis of Non-Coding RNA Alteration in Porcine Alveolar Macrophage Exposed to Aflatoxin B1. Toxins (Basel) 2022;14:373. [PMID: 35737034 DOI: 10.3390/toxins14060373] [Reference Citation Analysis]
6 Nicolella HD, de Assis S. Epigenetic Inheritance: Intergenerational Effects of Pesticides and Other Endocrine Disruptors on Cancer Development. IJMS 2022;23:4671. [DOI: 10.3390/ijms23094671] [Reference Citation Analysis]
7 Zeng L, Wang M, Zhou J, Wang X, Zhang Y, Su P. A hypothesis: Retrotransposons as a relay of epigenetic marks in intergenerational epigenetic inheritance. Gene 2022;817:146229. [PMID: 35063571 DOI: 10.1016/j.gene.2022.146229] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G 3rd, Kassotis C, Kay MK, Ji Kim M, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing Causal Links Between Chemical Exposures and Obesity. Biochem Pharmacol 2022;:115015. [PMID: 35395240 DOI: 10.1016/j.bcp.2022.115015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 de la Rocha C, Rodríguez-Ríos D, Ramírez-Chávez E, Molina-Torres J, de Jesús Flores-Sierra J, Orozco-Castellanos LM, Galván-Chía JP, Sánchez AV, Zaina S, Lund G. Cumulative Metabolic and Epigenetic Effects of Paternal and/or Maternal Supplementation with Arachidonic Acid across Three Consecutive Generations in Mice. Cells 2022;11:1057. [PMID: 35326508 DOI: 10.3390/cells11061057] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Ishihara T, Griffith OW, Suzuki S, Renfree MB. Presence of H3K4me3 on Paternally Expressed Genes of the Paternal Genome From Sperm to Implantation. Front Cell Dev Biol 2022;10:838684. [DOI: 10.3389/fcell.2022.838684] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Nilsson EE, Ben Maamar M, Skinner MK. Role of epigenetic transgenerational inheritance in generational toxicology. Environ Epigenet 2022;8:dvac001. [PMID: 35186326 DOI: 10.1093/eep/dvac001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Ben Maamar M, Beck D, Nilsson E, McCarrey JR, Skinner MK. Developmental alterations in DNA methylation during gametogenesis from primordial germ cells to sperm. iScience 2022;25:103786. [PMID: 35146397 DOI: 10.1016/j.isci.2022.103786] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Fitz-James MH, Cavalli G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet 2022. [PMID: 34983971 DOI: 10.1038/s41576-021-00438-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
14 Mohajer N, Joloya EM, Seo J, Shioda T, Blumberg B. Epigenetic Transgenerational Inheritance of the Effects of Obesogen Exposure. Front Endocrinol (Lausanne) 2021;12:787580. [PMID: 34975759 DOI: 10.3389/fendo.2021.787580] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Usman T, Ali N, Wang Y, Yu Y. Association of Aberrant DNA Methylation Level in the CD4 and JAK-STAT-Pathway-Related Genes with Mastitis Indicator Traits in Chinese Holstein Dairy Cattle. Animals (Basel) 2021;12:65. [PMID: 35011171 DOI: 10.3390/ani12010065] [Reference Citation Analysis]
16 Mi S, Chen S, Li W, Fang L, Yu Y. Effects of sperm DNA methylation on domesticated animal performance and perspectives on cross-species epigenetics in animal breeding. Anim Front 2021;11:39-47. [PMID: 34934528 DOI: 10.1093/af/vfab053] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Guerra-Carvalho B, Carrageta DF, Crisóstomo L, Carvalho RA, Alves MG, Oliveira PF. Molecular mechanisms regulating spermatogenesis in vertebrates: Environmental, metabolic, and epigenetic factor effects. Anim Reprod Sci 2021;:106896. [PMID: 34893378 DOI: 10.1016/j.anireprosci.2021.106896] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Zheng X, Li Z, Wang G, Wang H, Zhou Y, Zhao X, Cheng CY, Qiao Y, Sun F. Sperm epigenetic alterations contribute to inter- and transgenerational effects of paternal exposure to long-term psychological stress via evading offspring embryonic reprogramming. Cell Discov 2021;7:101. [PMID: 34711814 DOI: 10.1038/s41421-021-00343-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Mesnage R, Mahmud N, Mein CA, Antoniou MN. Alterations in small RNA profiles in liver following a subchronic exposure to a low-dose pesticide mixture in Sprague-Dawley rats. Toxicol Lett 2021;353:20-6. [PMID: 34626815 DOI: 10.1016/j.toxlet.2021.10.001] [Reference Citation Analysis]
20 Yaglova NV, Yaglov VV. Endocrine Disruptors as a New Etiologic Factor of Bone Tissue Diseases (Review). Sovrem Tekhnologii Med 2021;13:84-94. [PMID: 34513081 DOI: 10.17691/stm2021.13.2.10] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. Epigenetic inheritance and reproductive mode in plants and animals. Trends Ecol Evol 2021;36:1124-40. [PMID: 34489118 DOI: 10.1016/j.tree.2021.08.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
22 Olivares-Castro G, Cáceres-Jensen L, Guerrero-Bosagna C, Villagra C. Insect Epigenetic Mechanisms Facing Anthropogenic-Derived Contamination, an Overview. Insects 2021;12:780. [PMID: 34564220 DOI: 10.3390/insects12090780] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
23 Schuller A, Bellini C, Jenkins TG, Eden M, Matz J, Oakes J, Montrose L. Simulated Wildfire Smoke Significantly Alters Sperm DNA Methylation Patterns in a Murine Model. Toxics 2021;9:199. [PMID: 34564350 DOI: 10.3390/toxics9090199] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
24 Manterola M, Palominos MF, Calixto A. The Heritability of Behaviors Associated With the Host Gut Microbiota. Front Immunol 2021;12:658551. [PMID: 34054822 DOI: 10.3389/fimmu.2021.658551] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Sen R, Barnes C. Do Transgenerational Epigenetic Inheritance and Immune System Development Share Common Epigenetic Processes? J Dev Biol 2021;9:20. [PMID: 34065783 DOI: 10.3390/jdb9020020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Crisóstomo L, Jarak I, Rato LP, Raposo JF, Batterham RL, Oliveira PF, Alves MG. Inheritable testicular metabolic memory of high-fat diet causes transgenerational sperm defects in mice. Sci Rep 2021;11:9444. [PMID: 33941835 DOI: 10.1038/s41598-021-88981-3] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
27 Maurice C, Dalvai M, Lambrot R, Deschênes A, Scott-Boyer MP, McGraw S, Chan D, Côté N, Ziv-Gal A, Flaws JA, Droit A, Trasler J, Kimmins S, Bailey JL. Early-Life Exposure to Environmental Contaminants Perturbs the Sperm Epigenome and Induces Negative Pregnancy Outcomes for Three Generations via the Paternal Lineage. Epigenomes 2021;5:10. [PMID: 34968297 DOI: 10.3390/epigenomes5020010] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Ben Maamar M, Nilsson EE, Skinner MK. Epigenetic transgenerational inheritance, Gametogenesis and Germline Development. Biol Reprod 2021:ioab085. [PMID: 33929020 DOI: 10.1093/biolre/ioab085] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
29 Han X, Huang Q. Environmental pollutants exposure and male reproductive toxicity: The role of epigenetic modifications. Toxicology 2021;456:152780. [PMID: 33862174 DOI: 10.1016/j.tox.2021.152780] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
30 Qin H, Qu P, Hu H, Cao W, Liu H, Zhang Y, Zhao J, Nazira F, Liu E. Sperm-borne small RNAs improve the developmental competence of pre-implantation cloned embryos in rabbit. Zygote 2021;:1-6. [PMID: 33685548 DOI: 10.1017/S0967199420000805] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
31 Hu J, Yang Y, Lv X, Lao Z, Yu L. Dichlorodiphenyltrichloroethane metabolites inhibit DNMT1 activity which confers methylation-specific modulation of the sex determination pathway. Environ Pollut 2021;279:116828. [PMID: 33765505 DOI: 10.1016/j.envpol.2021.116828] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
32 Bleak TC, Calaf GM. Breast and prostate glands affected by environmental substances (Review). Oncol Rep 2021;45:20. [PMID: 33649835 DOI: 10.3892/or.2021.7971] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
33 Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2020;11:613636. [PMID: 33708235 DOI: 10.3389/fgene.2020.613636] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
34 Ozkocer SE, Konac E. The current perspective on genetic and epigenetic factors in sperm maturation in the epididymis. Andrologia 2021;53:e13989. [PMID: 33491190 DOI: 10.1111/and.13989] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
35 Beck D, Ben Maamar M, Skinner MK. Integration of sperm ncRNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance. Epigenetics Chromatin 2021;14:6. [PMID: 33436057 DOI: 10.1186/s13072-020-00378-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
36 Thorson JLM, Beck D, Ben Maamar M, Nilsson EE, McBirney M, Skinner MK. Epigenome-wide association study for atrazine induced transgenerational DNA methylation and histone retention sperm epigenetic biomarkers for disease. PLoS One 2020;15:e0239380. [PMID: 33326428 DOI: 10.1371/journal.pone.0239380] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
37 Ben Maamar M, Beck D, Nilsson EE, Kubsad D, Skinner MK. Epigenome-wide association study for glyphosate induced transgenerational sperm DNA methylation and histone retention epigenetic biomarkers for disease. Epigenetics 2020;:1-18. [PMID: 33296237 DOI: 10.1080/15592294.2020.1853319] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
38 Lehle JD, McCarrey JR. Differential susceptibility to endocrine disruptor-induced epimutagenesis. Environ Epigenet 2020;6:dvaa016. [PMID: 33324495 DOI: 10.1093/eep/dvaa016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
39 Nilsson EE, Maamar MB, Skinner MK. Environmentally Induced Epigenetic Transgenerational Inheritance and the Weismann Barrier: The Dawn of Neo-Lamarckian Theory. J Dev Biol 2020;8:E28. [PMID: 33291540 DOI: 10.3390/jdb8040028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
40 Spence JP, Lai D, Reiter JL, Cao S, Bell RL, Williams KE, Liang T. Epigenetic changes on rat chromosome 4 contribute to disparate alcohol drinking behavior in alcohol-preferring and -nonpreferring rats. Alcohol 2020;89:103-12. [PMID: 32798691 DOI: 10.1016/j.alcohol.2020.08.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Eve L, Fervers B, Le Romancer M, Etienne-Selloum N. Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer. Int J Mol Sci 2020;21:E9139. [PMID: 33266302 DOI: 10.3390/ijms21239139] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
42 Shi Y, Qi W, Xu Q, Wang Z, Cao X, Zhou L, Ye L. The role of epigenetics in the reproductive toxicity of environmental endocrine disruptors. Environ Mol Mutagen 2021;62:78-88. [PMID: 33217042 DOI: 10.1002/em.22414] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
43 Wu C, Blondin P, Vigneault C, Labrecque R, Sirard MA. Sperm miRNAs- potential mediators of bull age and early embryo development. BMC Genomics 2020;21:798. [PMID: 33198638 DOI: 10.1186/s12864-020-07206-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 0.5] [Reference Citation Analysis]
44 Thorson JLM, Beck D, Ben Maamar M, Nilsson EE, Skinner MK. Epigenome-wide association study for pesticide (Permethrin and DEET) induced DNA methylation epimutation biomarkers for specific transgenerational disease. Environ Health 2020;19:109. [PMID: 33148267 DOI: 10.1186/s12940-020-00666-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 0.5] [Reference Citation Analysis]
45 Ben Maamar M, Nilsson E, Thorson JLM, Beck D, Skinner MK. Transgenerational disease specific epigenetic sperm biomarkers after ancestral exposure to dioxin. Environ Res 2021;192:110279. [PMID: 33039529 DOI: 10.1016/j.envres.2020.110279] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
46 Ben Maamar M, Nilsson E, Thorson JLM, Beck D, Skinner MK. Epigenome-wide association study for transgenerational disease sperm epimutation biomarkers following ancestral exposure to jet fuel hydrocarbons. Reprod Toxicol 2020;98:61-74. [PMID: 32905848 DOI: 10.1016/j.reprotox.2020.08.010] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
47 Smithson M, Thorson JLM, Sadler-Riggleman I, Beck D, Skinner MK, Dybdahl M. Between-Generation Phenotypic and Epigenetic Stability in a Clonal Snail. Genome Biol Evol 2020;12:1604-15. [PMID: 32877512 DOI: 10.1093/gbe/evaa181] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Mo J, Au DW, Wan MT, Shi J, Zhang G, Winkler C, Kong RY, Seemann F. Multigenerational Impacts of Benzo[ a ]pyrene on Bone Modeling and Remodeling in Medaka ( Oryzias latipes ). Environ Sci Technol 2020;54:12271-84. [DOI: 10.1021/acs.est.0c02416] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
49 Yaglova N, Obernikhin S, Nazimova S, Yaglov V. Developmental exposure to endocrine disrupter dichlorodiphenyltrichloroethane alters transcriptional regulation of postnatal morphogenesis of adrenal zona fasciculata. Saudi J Biol Sci 2020;27:3655-9. [PMID: 33304177 DOI: 10.1016/j.sjbs.2020.08.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
50 Egusquiza RJ, Blumberg B. Environmental Obesogens and Their Impact on Susceptibility to Obesity: New Mechanisms and Chemicals. Endocrinology 2020;161:bqaa024. [PMID: 32067051 DOI: 10.1210/endocr/bqaa024] [Cited by in Crossref: 29] [Cited by in F6Publishing: 43] [Article Influence: 14.5] [Reference Citation Analysis]
51 Le Blévec E, Muroňová J, Ray PF, Arnoult C. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization. Mol Cell Endocrinol 2020;518:110964. [PMID: 32738444 DOI: 10.1016/j.mce.2020.110964] [Cited by in Crossref: 7] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
52 Torres-Flores U, Hernández-Hernández A. The Interplay Between Replacement and Retention of Histones in the Sperm Genome. Front Genet 2020;11:780. [PMID: 32765595 DOI: 10.3389/fgene.2020.00780] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
53 Ben Maamar M, Beck D, Nilsson E, McCarrey JR, Skinner MK. Developmental origins of transgenerational sperm histone retention following ancestral exposures. Dev Biol 2020;465:31-45. [PMID: 32628935 DOI: 10.1016/j.ydbio.2020.06.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
54 Ren XM, Kuo Y, Blumberg B. Agrochemicals and obesity. Mol Cell Endocrinol 2020;515:110926. [PMID: 32619583 DOI: 10.1016/j.mce.2020.110926] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
55 Van Cauwenbergh O, Di Serafino A, Tytgat J, Soubry A. Transgenerational epigenetic effects from male exposure to endocrine-disrupting compounds: a systematic review on research in mammals. Clin Epigenetics 2020;12:65. [PMID: 32398147 DOI: 10.1186/s13148-020-00845-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
56 O'Brien EA, Ensbey KS, Day BW, Baldock PA, Barry G. Direct evidence for transport of RNA from the mouse brain to the germline and offspring. BMC Biol 2020;18:45. [PMID: 32354330 DOI: 10.1186/s12915-020-00780-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
57 Yaglova NV, Obernikhin SS, Nazimova SV, Yaglov VV, Kosmachevskaya OV, Topunov AF. Changes in Transcriptional Regulation of Postnatal Morphogenesis of the Adrenal Zona Fasciculata Caused by Endocrine Disruptor Dichlorodiphenyltrichloroethane. Bull Exp Biol Med 2020;168:797-801. [PMID: 32328948 DOI: 10.1007/s10517-020-04805-w] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
58 Onuzulu CD, Rotimi OA, Rotimi SO. Epigenetic modifications associated with in utero exposure to endocrine disrupting chemicals BPA, DDT and Pb. Rev Environ Health 2019;34:309-25. [PMID: 31271561 DOI: 10.1515/reveh-2018-0059] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
59 Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Perrier JP, Fritz S, Le Danvic C, Boussaha M, Kiefer H, Jammes H, Schibler L. A comprehensive overview of bull sperm-borne small non-coding RNAs and their diversity across breeds. Epigenetics Chromatin 2020;13:19. [PMID: 32228651 DOI: 10.1186/s13072-020-00340-0] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
60 Galan C, Krykbaeva M, Rando OJ. Early life lessons: The lasting effects of germline epigenetic information on organismal development. Mol Metab 2020;38:100924. [PMID: 31974037 DOI: 10.1016/j.molmet.2019.12.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
61 Herst PM, Dalvai M, Lessard M, Charest PL, Navarro P, Joly-Beauparlant C, Droit A, Trasler JM, Kimmins S, MacFarlane AJ, Benoit-Biancamano MO, Bailey JL. Folic acid supplementation reduces multigenerational sperm miRNA perturbation induced by in utero environmental contaminant exposure. Environ Epigenet 2019;5:dvz024. [PMID: 31853372 DOI: 10.1093/eep/dvz024] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
62 Wolstenholme JT, Drobná Z, Henriksen AD, Goldsby JA, Stevenson R, Irvin JW, Flaws JA, Rissman EF. Transgenerational Bisphenol A Causes Deficits in Social Recognition and Alters Postsynaptic Density Genes in Mice. Endocrinology 2019;160:1854-67. [PMID: 31188430 DOI: 10.1210/en.2019-00196] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
63 Bodden C, Hannan AJ, Reichelt AC. Diet-Induced Modification of the Sperm Epigenome Programs Metabolism and Behavior. Trends Endocrinol Metab 2020;31:131-49. [PMID: 31744784 DOI: 10.1016/j.tem.2019.10.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 22] [Article Influence: 4.7] [Reference Citation Analysis]
64 Thorson JLM, Smithson M, Sadler-Riggleman I, Beck D, Dybdahl M, Skinner MK. Regional epigenetic variation in asexual snail populations among urban and rural lakes. Environ Epigenet 2019;5:dvz020. [PMID: 31723440 DOI: 10.1093/eep/dvz020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
65 Ben Maamar M, King SE, Nilsson E, Beck D, Skinner MK. Epigenetic transgenerational inheritance of parent-of-origin allelic transmission of outcross pathology and sperm epimutations. Dev Biol 2020;458:106-19. [PMID: 31682807 DOI: 10.1016/j.ydbio.2019.10.030] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
66 Cunningham AM, Walker DM, Nestler EJ. Paternal transgenerational epigenetic mechanisms mediating stress phenotypes of offspring. Eur J Neurosci 2021;53:271-80. [PMID: 31549423 DOI: 10.1111/ejn.14582] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
67 Franzago M, La Rovere M, Guanciali Franchi P, Vitacolonna E, Stuppia L. Epigenetics and human reproduction: the primary prevention of the noncommunicable diseases. Epigenomics 2019;11:1441-60. [PMID: 31596147 DOI: 10.2217/epi-2019-0163] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
68 Casier K, Boivin A, Carré C, Teysset L. Environmentally-Induced Transgenerational Epigenetic Inheritance: Implication of PIWI Interacting RNAs. Cells 2019;8:E1108. [PMID: 31546882 DOI: 10.3390/cells8091108] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
69 Diaz-Castillo C, Chamorro-Garcia R, Shioda T, Blumberg B. Transgenerational Self-Reconstruction of Disrupted Chromatin Organization After Exposure To An Environmental Stressor in Mice. Sci Rep 2019;9:13057. [PMID: 31506492 DOI: 10.1038/s41598-019-49440-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
70 El Khoury D, Fayjaloun S, Nassar M, Sahakian J, Aad PY. Updates on the Effect of Mycotoxins on Male Reproductive Efficiency in Mammals. Toxins (Basel) 2019;11:E515. [PMID: 31484408 DOI: 10.3390/toxins11090515] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
71 Sadler-Riggleman I, Klukovich R, Nilsson E, Beck D, Xie Y, Yan W, Skinner MK. Epigenetic transgenerational inheritance of testis pathology and Sertoli cell epimutations: generational origins of male infertility. Environ Epigenet 2019;5:dvz013. [PMID: 31528361 DOI: 10.1093/eep/dvz013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
72 Wu D, Huang CJ, Jiao XF, Ding ZM, Zhang SX, Miao YL, Huo LJ. Bisphenol AF compromises blood-testis barrier integrity and sperm quality in mice. Chemosphere 2019;237:124410. [PMID: 31362132 DOI: 10.1016/j.chemosphere.2019.124410] [Cited by in Crossref: 13] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
73 Zhang Y, Shi J, Rassoulzadegan M, Tuorto F, Chen Q. Sperm RNA code programmes the metabolic health of offspring. Nat Rev Endocrinol 2019;15:489-98. [PMID: 31235802 DOI: 10.1038/s41574-019-0226-2] [Cited by in Crossref: 86] [Cited by in F6Publishing: 79] [Article Influence: 28.7] [Reference Citation Analysis]
74 Perera BPU, Faulk C, Svoboda LK, Goodrich JM, Dolinoy DC. The role of environmental exposures and the epigenome in health and disease. Environ Mol Mutagen 2020;61:176-92. [PMID: 31177562 DOI: 10.1002/em.22311] [Cited by in Crossref: 18] [Cited by in F6Publishing: 28] [Article Influence: 6.0] [Reference Citation Analysis]
75 King SE, McBirney M, Beck D, Sadler-Riggleman I, Nilsson E, Skinner MK. Sperm epimutation biomarkers of obesity and pathologies following DDT induced epigenetic transgenerational inheritance of disease. Environ Epigenet 2019;5:dvz008. [PMID: 31186947 DOI: 10.1093/eep/dvz008] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
76 Skinner MK, Nilsson E, Sadler-Riggleman I, Beck D, Ben Maamar M, McCarrey JR. Transgenerational sperm DNA methylation epimutation developmental origins following ancestral vinclozolin exposure. Epigenetics 2019;14:721-39. [PMID: 31079544 DOI: 10.1080/15592294.2019.1614417] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
77 Rompala GR, Homanics GE. Intergenerational Effects of Alcohol: A Review of Paternal Preconception Ethanol Exposure Studies and Epigenetic Mechanisms in the Male Germline. Alcohol Clin Exp Res. 2019;43:1032-1045. [PMID: 30908630 DOI: 10.1111/acer.14029] [Cited by in Crossref: 11] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
78 Lee MK, Blumberg B. Transgenerational effects of obesogens. Basic Clin Pharmacol Toxicol 2019;125 Suppl 3:44-57. [PMID: 30801972 DOI: 10.1111/bcpt.13214] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
79 Chamorro-Garcia R, Blumberg B. Current Research Approaches and Challenges in the Obesogen Field. Front Endocrinol (Lausanne) 2019;10:167. [PMID: 30967838 DOI: 10.3389/fendo.2019.00167] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
80 Perera BPU, Svoboda L, Dolinoy DC. Genomic Tools for Environmental Epigenetics and Implications for Public Health. Curr Opin Toxicol 2019;18:27-33. [PMID: 31763499 DOI: 10.1016/j.cotox.2019.02.008] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
81 Klukovich R, Nilsson E, Sadler-Riggleman I, Beck D, Xie Y, Yan W, Skinner MK. Environmental Toxicant Induced Epigenetic Transgenerational Inheritance of Prostate Pathology and Stromal-Epithelial Cell Epigenome and Transcriptome Alterations: Ancestral Origins of Prostate Disease. Sci Rep 2019;9:2209. [PMID: 30778168 DOI: 10.1038/s41598-019-38741-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
82 Ben Maamar M, Nilsson E, Sadler-Riggleman I, Beck D, McCarrey JR, Skinner MK. Developmental origins of transgenerational sperm DNA methylation epimutations following ancestral DDT exposure. Dev Biol 2019;445:280-93. [PMID: 30500333 DOI: 10.1016/j.ydbio.2018.11.016] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
83 Gillette R, Son MJ, Ton L, Gore AC, Crews D. Passing experiences on to future generations: endocrine disruptors and transgenerational inheritance of epimutations in brain and sperm. Epigenetics. 2018;13:1106-1126. [PMID: 30444163 DOI: 10.1080/15592294.2018.1543506] [Cited by in Crossref: 26] [Cited by in F6Publishing: 33] [Article Influence: 6.5] [Reference Citation Analysis]
84 Nilsson E, Klukovich R, Sadler-Riggleman I, Beck D, Xie Y, Yan W, Skinner MK. Environmental toxicant induced epigenetic transgenerational inheritance of ovarian pathology and granulosa cell epigenome and transcriptome alterations: ancestral origins of polycystic ovarian syndrome and primary ovarian insufiency. Epigenetics 2018;13:875-95. [PMID: 30207508 DOI: 10.1080/15592294.2018.1521223] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 6.0] [Reference Citation Analysis]
85 Heindel JJ. The developmental basis of disease: Update on environmental exposures and animal models. Basic Clin Pharmacol Toxicol 2019;125 Suppl 3:5-13. [PMID: 30265444 DOI: 10.1111/bcpt.13118] [Cited by in Crossref: 29] [Cited by in F6Publishing: 33] [Article Influence: 7.3] [Reference Citation Analysis]
86 Nilsson E, King SE, McBirney M, Kubsad D, Pappalardo M, Beck D, Sadler-Riggleman I, Skinner MK. Vinclozolin induced epigenetic transgenerational inheritance of pathologies and sperm epimutation biomarkers for specific diseases. PLoS One 2018;13:e0202662. [PMID: 30157260 DOI: 10.1371/journal.pone.0202662] [Cited by in Crossref: 40] [Cited by in F6Publishing: 46] [Article Influence: 10.0] [Reference Citation Analysis]
87 Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. Environ Epigenet 2018;4:dvy016. [PMID: 30038800 DOI: 10.1093/eep/dvy016] [Cited by in Crossref: 133] [Cited by in F6Publishing: 138] [Article Influence: 33.3] [Reference Citation Analysis]
88 Bomans K, Schenz J, Tamulyte S, Schaack D, Weigand MA, Uhle F. Paternal sepsis induces alterations of the sperm methylome and dampens offspring immune responses-an animal study. Clin Epigenetics 2018;10:89. [PMID: 29988283 DOI: 10.1186/s13148-018-0522-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
89 Barrachina F, Anastasiadi D, Jodar M, Castillo J, Estanyol JM, Piferrer F, Oliva R. Identification of a complex population of chromatin-associated proteins in the European sea bass (Dicentrarchus labrax) sperm. Syst Biol Reprod Med 2018;64:502-17. [PMID: 29939100 DOI: 10.1080/19396368.2018.1482383] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
90 Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A. A Decade of Exploring the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance. Front Cell Dev Biol. 2018;6:50. [PMID: 29868581 DOI: 10.3389/fcell.2018.00050] [Cited by in Crossref: 61] [Cited by in F6Publishing: 72] [Article Influence: 15.3] [Reference Citation Analysis]
91 Ben Maamar M, Sadler-Riggleman I, Beck D, McBirney M, Nilsson E, Klukovich R, Xie Y, Tang C, Yan W, Skinner MK. Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. Environ Epigenet 2018;4:dvy010. [PMID: 29732173 DOI: 10.1093/eep/dvy010] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 15.0] [Reference Citation Analysis]
92 Ben Maamar M, Sadler-Riggleman I, Beck D, Skinner MK. Epigenetic Transgenerational Inheritance of Altered Sperm Histone Retention Sites. Sci Rep 2018;8:5308. [PMID: 29593303 DOI: 10.1038/s41598-018-23612-y] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 13.0] [Reference Citation Analysis]