BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lin Y, Xu J, Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol. 2019;12:76. [PMID: 31300030 DOI: 10.1186/s13045-019-0760-3] [Cited by in Crossref: 447] [Cited by in F6Publishing: 488] [Article Influence: 111.8] [Reference Citation Analysis]
Number Citing Articles
1 Yang B, Meng F, Zhang J, Chen K, Meng S, Cai K, Zhao Y, Dai L. Engineered drug delivery nanosystems for tumor microenvironment normalization therapy. Nano Today 2023;49:101766. [DOI: 10.1016/j.nantod.2023.101766] [Reference Citation Analysis]
2 Palombo R, Passacantilli I, Terracciano F, Capone A, Matteocci A, Tournier S, Alberdi A, Chiurchiù V, Volpe E, Paronetto MP. Inhibition of the PI3K/AKT/mTOR signaling promotes an M1 macrophage switch by repressing the ATF3-CXCL8 axis in Ewing sarcoma. Cancer Lett 2023;555:216042. [PMID: 36565919 DOI: 10.1016/j.canlet.2022.216042] [Reference Citation Analysis]
3 Lee Y, Graham P, Li Y. Extracellular vesicles as a novel approach for breast cancer therapeutics. Cancer Lett 2023;555:216036. [PMID: 36521658 DOI: 10.1016/j.canlet.2022.216036] [Reference Citation Analysis]
4 Asl ER, Rostamzadeh D, Duijf PHG, Mafi S, Mansoori B, Barati S, Cho WC, Mansoori B. Mutant P53 in the formation and progression of the tumor microenvironment: Friend or foe. Life Sci 2023;315:121361. [PMID: 36608871 DOI: 10.1016/j.lfs.2022.121361] [Reference Citation Analysis]
5 Xu X, Xiang Y, Yang Y, Liu K, Cui Z, Tong X, Chen J, Hou F, Luo Z. The application of tumor cell-derived vesicles in oncology therapy. Clin Transl Oncol 2023;25:364-74. [PMID: 36207510 DOI: 10.1007/s12094-022-02966-w] [Reference Citation Analysis]
6 Rehman U, Abourehab MA, Alexander A, Kesharwani P. Polymeric micelles assisted combinatorial therapy: Is it new hope for pancreatic cancer? European Polymer Journal 2023;184:111784. [DOI: 10.1016/j.eurpolymj.2022.111784] [Reference Citation Analysis]
7 Hsu J, Chong C, Serrill J, Goon L, Balayan J, Johnson EN, Lorenzana G, Wu S, Leong KG, Yun TJ, Wang Y, Jiang F, Bannen L, Lamb P, Xu W, Yu P. Preclinical Characterization of XL092, a Novel Receptor Tyrosine Kinase Inhibitor of MET, VEGFR2, AXL, and MER. Mol Cancer Ther 2023;22:179-91. [PMID: 36399631 DOI: 10.1158/1535-7163.MCT-22-0262] [Reference Citation Analysis]
8 Gao FY, Li XT, Xu K, Wang RT, Guan XX. c-MYC mediates the crosstalk between breast cancer cells and tumor microenvironment. Cell Commun Signal 2023;21:28. [PMID: 36721232 DOI: 10.1186/s12964-023-01043-1] [Reference Citation Analysis]
9 Gao X, Zhou S, Qin Z, Li D, Zhu Y, Ma D. Upregulation of HMGB1 in tumor-associated macrophages induced by tumor cell-derived lactate further promotes colorectal cancer progression. J Transl Med 2023;21:53. [PMID: 36709284 DOI: 10.1186/s12967-023-03918-w] [Reference Citation Analysis]
10 Song S, Zhao Y, Wang X, Tong X, Chen X, Xiong Q. M2 macrophages-derived exosomal miR-3917 promotes the progression of lung cancer via targeting GRK6. Biol Chem 2023;404:41-57. [PMID: 36261031 DOI: 10.1515/hsz-2022-0162] [Reference Citation Analysis]
11 Yap DRY, Lim JQ, Huang D, Ong CK, Chan JY. Emerging predictive biomarkers for novel therapeutics in peripheral T-cell and natural killer/T-cell lymphoma. Front Immunol 2023;14. [DOI: 10.3389/fimmu.2023.1068662] [Reference Citation Analysis]
12 Zhang Y, Li J, Li F, Xue S, Xu Q, Zhang Y, Feng L. Palmitic Acid combined with γ-interferon inhibits gastric cancer progression by modulating macrophages polarization via the TLR4 pathway.. [DOI: 10.21203/rs.3.rs-2488394/v1] [Reference Citation Analysis]
13 Huynh M, Crane MJ, Jamieson AM. The lung, the niche, and the microbe: Exploring the lung microbiome in cancer and immunity. Front Immunol 2023;13. [DOI: 10.3389/fimmu.2022.1094110] [Reference Citation Analysis]
14 Zhang Q, Zhu Y, Rahat MA, Kzhyshkowska J. Editorial: Angiogenesis and tumor metastasis. Front Oncol 2023;12. [DOI: 10.3389/fonc.2022.1129736] [Reference Citation Analysis]
15 Peng X, Gong C, Zhang W, Zhou A. Advanced development of biomarkers for immunotherapy in hepatocellular carcinoma. Front Oncol 2022;12:1091088. [PMID: 36727075 DOI: 10.3389/fonc.2022.1091088] [Reference Citation Analysis]
16 Jain N, Srinivasarao DA, Famta P, Shah S, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sci 2023;316:121399. [PMID: 36646378 DOI: 10.1016/j.lfs.2023.121399] [Reference Citation Analysis]
17 Morihiro K, Osumi H, Morita S, Hattori T, Baba M, Harada N, Ohashi R, Okamoto A. Oncolytic Hairpin DNA Pair: Selective Cytotoxic Inducer through MicroRNA-Triggered DNA Self-Assembly. J Am Chem Soc 2023;145:135-42. [PMID: 36538570 DOI: 10.1021/jacs.2c08974] [Reference Citation Analysis]
18 Zhang X, Yan Q, Wang J, Xu L, Guo Y. The antitumor activity of Bax BH3 peptide delivered by gold nanoparticles. Front Mater 2023;9. [DOI: 10.3389/fmats.2022.1099997] [Reference Citation Analysis]
19 Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, Laurent S. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics 2023;15. [PMID: 36678868 DOI: 10.3390/pharmaceutics15010236] [Reference Citation Analysis]
20 Shi Z, Wang X, Luo J, Zeng Y, Wen Q, Hong Y, Zhang T, Huang P. RNA sequencing-based optimization of biological lipid droplets for sonodynamic therapy to reverse tumor hypoxia and elicit robust immune response. Nano Res 2023. [DOI: 10.1007/s12274-022-5340-0] [Reference Citation Analysis]
21 Guo L, Kong D, Liu J, Zhan L, Luo L, Zheng W, Zheng Q, Chen C, Sun S. Breast cancer heterogeneity and its implication in personalized precision therapy. Exp Hematol Oncol 2023;12:3. [PMID: 36624542 DOI: 10.1186/s40164-022-00363-1] [Reference Citation Analysis]
22 Kazakova E, Iamshchikov P, Larionova I, Kzhyshkowska J. Macrophage scavenger receptors: Tumor support and tumor inhibition. Front Oncol 2022;12:1096897. [PMID: 36686729 DOI: 10.3389/fonc.2022.1096897] [Reference Citation Analysis]
23 Huang Z, Efthymiadou A, Liang N, Fan R, Treuter E. Antagonistic action of GPS2 and KDM1A at enhancers governs alternative macrophage activation by interleukin 4. Nucleic Acids Res 2023:gkac1230. [PMID: 36610795 DOI: 10.1093/nar/gkac1230] [Reference Citation Analysis]
24 Tigue ML, Loberg MA, Goettel JA, Weiss WA, Lee E, Weiss VL. Wnt Signaling in the Phenotype and Function of Tumor-Associated Macrophages. Cancer Res 2023;83:3-11. [PMID: 36214645 DOI: 10.1158/0008-5472.CAN-22-1403] [Reference Citation Analysis]
25 Catalano M, Roviello G, Santi R, Villari D, Spatafora P, Galli IC, Sessa F, Conte FL, Mini E, Cai T, Nesi G. Inflammation in Urological Malignancies: The Silent Killer. Int J Mol Sci 2023;24. [PMID: 36614308 DOI: 10.3390/ijms24010866] [Reference Citation Analysis]
26 Zhang X, Bai W, Hu L, Ha H, Du Y, Xiong W, Wang H, Shang P. The pleiotropic mode and molecular mechanism of macrophages in promoting tumor progression and metastasis. Clin Transl Oncol 2023;25:91-104. [PMID: 36071369 DOI: 10.1007/s12094-022-02932-6] [Reference Citation Analysis]
27 Mito I, Takahashi H, Kawabata-Iwakawa R, Horikawa M, Ida S, Tada H, Matsuyama T, Misawa K, Takeda S, Chikamatsu K. Tumor-derived exosomes elicit cancer-associated fibroblasts shaping inflammatory tumor microenvironment in head and neck squamous cell carcinoma. Oral Oncol 2023;136:106270. [PMID: 36462328 DOI: 10.1016/j.oraloncology.2022.106270] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Gupta S, Sarangi PP. Inflammation driven metabolic regulation and adaptation in macrophages. Clin Immunol 2023;246:109216. [PMID: 36572212 DOI: 10.1016/j.clim.2022.109216] [Reference Citation Analysis]
29 Momtazmanesh S, Rezaei N. Introduction to Tumor Microenvironment. Handbook of Cancer and Immunology 2023. [DOI: 10.1007/978-3-030-80962-1_82-1] [Reference Citation Analysis]
30 Mandal D, Kushwaha K, Gupta J. Emerging nano-strategies against tumour microenvironment (TME): a review. OpenNano 2023;9:100112. [DOI: 10.1016/j.onano.2022.100112] [Reference Citation Analysis]
31 Ng WL, Ansell SM, Mondello P. Insights into the tumor microenvironment of B cell lymphoma. J Exp Clin Cancer Res 2022;41:362. [PMID: 36578079 DOI: 10.1186/s13046-022-02579-9] [Reference Citation Analysis]
32 Anwar MM, Albanese C, Hamdy NM, Sultan AS. Rise of the natural red pigment 'prodigiosin' as an immunomodulator in cancer. Cancer Cell Int 2022;22:419. [PMID: 36577970 DOI: 10.1186/s12935-022-02815-4] [Reference Citation Analysis]
33 Fang Q, Stehr AM, Naschberger E, Knopf J, Herrmann M, Stürzl M. No NETs no TIME: Crosstalk between neutrophil extracellular traps and the tumor immune microenvironment. Front Immunol 2022;13:1075260. [PMID: 36618417 DOI: 10.3389/fimmu.2022.1075260] [Reference Citation Analysis]
34 Li HX, Wang SQ, Lian ZX, Deng SL, Yu K. Relationship between Tumor Infiltrating Immune Cells and Tumor Metastasis and Its Prognostic Value in Cancer. Cells 2022;12. [PMID: 36611857 DOI: 10.3390/cells12010064] [Reference Citation Analysis]
35 Huang L, Wang F, Wang X, Su C, Wu S, Yang C, Luo M, Zhang J, Fu L. M2-like macrophage-derived exosomes facilitate metastasis in non-small-cell lung cancer by delivering integrin αVβ3. MedComm (2020) 2023;4:e191. [PMID: 36582304 DOI: 10.1002/mco2.191] [Reference Citation Analysis]
36 Lin SC, Liao YC, Chen PM, Yang YY, Wang YH, Tung SL, Chuang CM, Sung YW, Jang TH, Chuang SE, Wang LH. Periostin promotes ovarian cancer metastasis by enhancing M2 macrophages and cancer-associated fibroblasts via integrin-mediated NF-κB and TGF-β2 signaling. J Biomed Sci 2022;29:109. [PMID: 36550569 DOI: 10.1186/s12929-022-00888-x] [Reference Citation Analysis]
37 Nallasamy P, Nimmakayala RK, Parte S, Are AC, Batra SK, Ponnusamy MP. Tumor microenvironment enriches the stemness features: the architectural event of therapy resistance and metastasis. Mol Cancer 2022;21:225. [PMID: 36550571 DOI: 10.1186/s12943-022-01682-x] [Reference Citation Analysis]
38 Zhou L, Qin S, Zhang Q, Xu J. Clinical characteristics and risk factors of central lymph node and thyroid metastasis in patients with hypopharyngeal carcinoma. Am J Otolaryngol 2022;44:103742. [PMID: 36610248 DOI: 10.1016/j.amjoto.2022.103742] [Reference Citation Analysis]
39 Wei-Wei Chen, Timothy Shun Man Chu, LiangLiang Xu, Cai-Ning Zhao, Wai-Sang Poon, Gilberto Ka-Kit Leung, Feng-Ming (Spring) Kong. Immune related biomarkers for cancer metastasis to the brain. Exp Hematol Oncol 2022;11:105. [PMID: 36527157 DOI: 10.1186/s40164-022-00349-z] [Reference Citation Analysis]
40 Elkholi IE, Lalonde A, Park M, Côté JF. Breast Cancer Metastatic Dormancy and Relapse: An Enigma of Microenvironment(s). Cancer Res 2022;82:4497-510. [PMID: 36214624 DOI: 10.1158/0008-5472.CAN-22-1902] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Zeng Z, Yu J, Yang Z, Du K, Chen Y, Zhou L. Investigation of M2 macrophage-related gene affecting patients prognosis and drug sensitivity in non-small cell lung cancer: Evidence from bioinformatic and experiments. Front Oncol 2022;12:1096449. [PMID: 36591493 DOI: 10.3389/fonc.2022.1096449] [Reference Citation Analysis]
42 Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28(46): 6433-6477 [DOI: 10.3748/wjg.v28.i46.6433] [Reference Citation Analysis]
43 Zhang J, Fu L, Yasuda-yoshihara N, Yonemura A, Wei F, Bu L, Hu X, Akiyama T, Kitamura F, Yasuda T, Semba T, Uchihara T, Itoyama R, Yamashita K, Eto K, Iwagami S, Yashiro M, Komohara Y, Baba H, Ishimoto T. IL-1β derived from mixed-polarized macrophages activates fibroblasts and synergistically forms a cancer-promoting microenvironment. Gastric Cancer 2022. [DOI: 10.1007/s10120-022-01352-3] [Reference Citation Analysis]
44 Kariagina A, Doseff AI. Anti-Inflammatory Mechanisms of Dietary Flavones: Tapping into Nature to Control Chronic Inflammation in Obesity and Cancer. Int J Mol Sci 2022;23. [PMID: 36555392 DOI: 10.3390/ijms232415753] [Reference Citation Analysis]
45 Liu M, Liu L, Song Y, Li W, Xu L. Targeting macrophages: a novel treatment strategy in solid tumors. J Transl Med 2022;20:586. [PMID: 36510315 DOI: 10.1186/s12967-022-03813-w] [Reference Citation Analysis]
46 Hanusek K, Karczmarski J, Litwiniuk A, Urbańska K, Ambrozkiewicz F, Kwiatkowski A, Martyńska L, Domańska A, Bik W, Paziewska A. Obesity as a Risk Factor for Breast Cancer-The Role of miRNA. Int J Mol Sci 2022;23. [PMID: 36555323 DOI: 10.3390/ijms232415683] [Reference Citation Analysis]
47 Peng N, Kang HH, Feng Y, Minikes AM, Jiang X. Autophagy Inhibition Signals through Senescence to Promote Tumor Suppression. Autophagy 2022. [DOI: 10.1080/15548627.2022.2155794] [Reference Citation Analysis]
48 Pakravan K, Mossahebi-Mohammadi M, Ghazimoradi MH, Cho WC, Sadeghizadeh M, Babashah S. Monocytes educated by cancer-associated fibroblasts secrete exosomal miR-181a to activate AKT signaling in breast cancer cells. J Transl Med 2022;20:559. [PMID: 36463188 DOI: 10.1186/s12967-022-03780-2] [Reference Citation Analysis]
49 Zhang R, Cheng K, Sun X, Yang X, Li Y, Hu Y, Zhang X, Liu B, Chen W, Zhao Y, Huang D. Biomimetic O2 Self-generated hybrid membrane nanoplatform for blocking the polarization towards immunosuppressive M2 macrophage phenotype and enhancing sonodynamics therapy in orthotopic colorectal cancer. Chemical Engineering Journal 2022;450:138337. [DOI: 10.1016/j.cej.2022.138337] [Reference Citation Analysis]
50 Li L, Yang LL, Yang SL, Wang RQ, Gao H, Lin ZY, Zhao YY, Tang WW, Han R, Wang WJ, Liu P, Hou ZL, Meng MY, Liao LW. Andrographolide suppresses breast cancer progression by modulating tumor-associated macrophage polarization through the Wnt/β-catenin pathway. Phytother Res 2022;36:4587-603. [PMID: 35916377 DOI: 10.1002/ptr.7578] [Reference Citation Analysis]
51 Famta P, Shah S, Jain N, Kumar KC, Bagasariya D, Khatri DK, Raghuvanshi RS, Singh SB, Srivastava S. Tumor-promoting aftermath post-chemotherapy: A focus on breast cancer. Life Sciences 2022;310:121125. [DOI: 10.1016/j.lfs.2022.121125] [Reference Citation Analysis]
52 Zhou L, Deng X, Xiao X, Liao Y, Chen W, Dai Q. Kruppel-like factor 9 inhibits growth and metastasis of cholangiocarcinoma cells by targeted regulation of metallothionein 1 M transcription. Tissue and Cell 2022;79:101962. [DOI: 10.1016/j.tice.2022.101962] [Reference Citation Analysis]
53 Smyth P, Sasiwachirangkul J, Williams R, Scott CJ. Cathepsin S (CTSS) activity in health and disease - A treasure trove of untapped clinical potential. Mol Aspects Med 2022;88:101106. [PMID: 35868042 DOI: 10.1016/j.mam.2022.101106] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Wang D, Li H, Wang D, Hao Y, Gui H, Liu J, Zhang Y, Liu J, Yang C. Supramolecular Coassembled Peptide Hydrogels for Efficient Anticancer Therapy by RNS-Based PDT and Immune Microenvironment Regulation. Macromol Biosci 2022;22:e2200359. [PMID: 36208072 DOI: 10.1002/mabi.202200359] [Reference Citation Analysis]
55 Missiroli S, Perrone M, Gafà R, Nicoli F, Bonora M, Morciano G, Boncompagni C, Marchi S, Lebiedzinska-Arciszewska M, Vezzani B, Lanza G, Kricek F, Borghi A, Fiorica F, Ito K, Wieckowski MR, Di Virgilio F, Abelli L, Pinton P, Giorgi C. PML at mitochondria-associated membranes governs a trimeric complex with NLRP3 and P2X7R that modulates the tumor immune microenvironment. Cell Death Differ 2022. [PMID: 36450825 DOI: 10.1038/s41418-022-01095-9] [Reference Citation Analysis]
56 Frenay J, Bellaye PS, Oudot A, Helbling A, Petitot C, Ferrand C, Collin B, Dias AMM. IL-1RAP, a Key Therapeutic Target in Cancer. Int J Mol Sci 2022;23. [PMID: 36499246 DOI: 10.3390/ijms232314918] [Reference Citation Analysis]
57 Huang J, Huang J, Zhang G. Insights into the Role of Sialylation in Cancer Metastasis, Immunity, and Therapeutic Opportunity. Cancers (Basel) 2022;14. [PMID: 36497322 DOI: 10.3390/cancers14235840] [Reference Citation Analysis]
58 Kilmister EJ, Koh SP, Weth FR, Gray C, Tan ST. Cancer Metastasis and Treatment Resistance: Mechanistic Insights and Therapeutic Targeting of Cancer Stem Cells and the Tumor Microenvironment. Biomedicines 2022;10. [PMID: 36428556 DOI: 10.3390/biomedicines10112988] [Reference Citation Analysis]
59 Wang SSY, Chng WJ, Liu H, de Mel S. Tumor-Associated Macrophages and Related Myelomonocytic Cells in the Tumor Microenvironment of Multiple Myeloma. Cancers (Basel) 2022;14. [PMID: 36428745 DOI: 10.3390/cancers14225654] [Reference Citation Analysis]
60 Singh A, Anang V, Kumari K, Kottarath SK, Verma C. Role of lymphocytes, macrophages and immune receptors in suppression of tumor immunity. Prog Mol Biol Transl Sci 2023;194:269-310. [PMID: 36631195 DOI: 10.1016/bs.pmbts.2022.10.002] [Reference Citation Analysis]
61 Tang K, Zhang J, Cao H, Xiao G, Wang Z, Zhang X, Zhang N, Wu W, Zhang H, Wang Q, Xu H, Cheng Q. Identification of CD73 as a Novel Biomarker Encompassing the Tumor Microenvironment, Prognosis, and Therapeutic Responses in Various Cancers. Cancers (Basel) 2022;14. [PMID: 36428755 DOI: 10.3390/cancers14225663] [Reference Citation Analysis]
62 Barsheshet Y, Voloshin T, Brant B, Cohen G, Koren L, Blatt R, Cahal S, Haj Khalil T, Zemer Tov E, Paz R, Klein-Goldberg A, Tempel-Brami C, Jacobovitch S, Volodin A, Kan T, Koltun B, David C, Haber A, Giladi M, Weinberg U, Palti Y. Tumor Treating Fields (TTFields) Concomitant with Immune Checkpoint Inhibitors Are Therapeutically Effective in Non-Small Cell Lung Cancer (NSCLC) In Vivo Model. Int J Mol Sci 2022;23. [PMID: 36430552 DOI: 10.3390/ijms232214073] [Reference Citation Analysis]
63 Carrara SC, Harwardt J, Grzeschik J, Hock B, Kolmar H. TriTECM: A tetrafunctional T-cell engaging antibody with built-in risk mitigation of cytokine release syndrome. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1051875] [Reference Citation Analysis]
64 Zaidi NE, Shazali NAH, Leow TC, Osman MA, Ibrahim K, Cheng WH, Lai KS, Nik Abd Rahman NMA. CD36-Fatty Acid-Mediated Metastasis via the Bidirectional Interactions of Cancer Cells and Macrophages. Cells 2022;11. [PMID: 36428985 DOI: 10.3390/cells11223556] [Reference Citation Analysis]
65 Khoshnevis M, Brown R, Belluco S, Zahi I, Maciocco L, Bonnefont-rebeix C, Pillet-michelland E, Tranel J, Roger T, Nennig C, Oudoire P, Marcon L, Tillement O, Louis C, Gehan H, Bardiès M, Mariani M, Muzio V, Meunier J, Duchemin C, Michel N, N’tsiba E, Haddad F, Buronfosse T, Carozzo C, Ponce F. Therapeutic efficacy of 166Holmium siloxane in microbrachytherapy of induced glioblastoma in minipig tumor model. Front Oncol 2022;12. [DOI: 10.3389/fonc.2022.923679] [Reference Citation Analysis]
66 Gao J, Zhao Z, Zhang H, Huang S, Xu M, Pan H. Transcriptomic characterization and construction of M2 macrophage-related prognostic and immunotherapeutic signature in ovarian metastasis of gastric cancer. Cancer Immunol Immunother 2022. [DOI: 10.1007/s00262-022-03316-z] [Reference Citation Analysis]
67 Wu Q, Cui Z, Xia H, Jiang S, Bai J, Shao Z, Sun Y. A extracellular secretion of miR-1825 wrapped by exosomes increases CLEC5A expression: a potential oncogenic mechanism in ovarian cancer.. [DOI: 10.21203/rs.3.rs-2217739/v1] [Reference Citation Analysis]
68 Zheng M, Zhang W, Chen X, Guo H, Wu H, Xu Y, He Q, Ding L, Yang B. The impact of lipids on the cancer–immunity cycle and strategies for modulating lipid metabolism to improve cancer immunotherapy. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.10.027] [Reference Citation Analysis]
69 Maciel Costa Silva RC, Lopes MF, Travassos Correa LH. Distinct T helper cell-mediated antitumor immunity: T helper 2 cells in focus. Cancer Pathogenesis and Therapy 2022. [DOI: 10.1016/j.cpt.2022.11.001] [Reference Citation Analysis]
70 Ahmad M, Dhasmana A, Harne PS, Zamir A, Hafeez BB. Chemokine clouding and liver cancer heterogeneity: Does it impact clinical outcomes? Semin Cancer Biol 2022;86:1175-85. [PMID: 35189322 DOI: 10.1016/j.semcancer.2022.02.015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Fan F, Mo H, Zhang H, Dai Z, Wang Z, Qu C, Liu F, Zhang L, Luo P, Zhang J, Liu Z, Cheng Q, Ding F. HOXA5: A crucial transcriptional factor in cancer and a potential therapeutic target. Biomedicine & Pharmacotherapy 2022;155:113800. [DOI: 10.1016/j.biopha.2022.113800] [Reference Citation Analysis]
72 Mughees M, Kaushal JB, Sharma G, Wajid S, Batra SK, Siddiqui JA. Chemokines and cytokines: Axis and allies in prostate cancer pathogenesis. Semin Cancer Biol 2022;86:497-512. [PMID: 35181473 DOI: 10.1016/j.semcancer.2022.02.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
73 Tanvir I, Hassan A, Albeladi F. DNA Methylation and Epigenetic Events Underlying Renal Cell Carcinomas. Cureus 2022. [DOI: 10.7759/cureus.30743] [Reference Citation Analysis]
74 Ma J, Yao Y, Tian Y, Chen K, Liu B. Advances in sex disparities for cancer immunotherapy: unveiling the dilemma of Yin and Yang. Biol Sex Differ 2022;13:58. [PMID: 36273184 DOI: 10.1186/s13293-022-00469-5] [Reference Citation Analysis]
75 Monnier M, Paolini L, Vinatier E, Mantovani A, Delneste Y, Jeannin P. Antitumor strategies targeting macrophages: the importance of considering the differences in differentiation/polarization processes between human and mouse macrophages. J Immunother Cancer 2022;10:e005560. [PMID: 36270732 DOI: 10.1136/jitc-2022-005560] [Reference Citation Analysis]
76 Ma X, Zhu H, Cheng L, Chen X, Shu K, Zhang S. Targeting FGL2 in glioma immunosuppression and malignant progression. Front Oncol 2022;12:1004700. [DOI: 10.3389/fonc.2022.1004700] [Reference Citation Analysis]
77 Guo H, Yang J, Wang H, Liu X, Liu Y, Zhou K. Reshaping the tumor microenvironment: The versatility of immunomodulatory drugs in B-cell neoplasms. Front Immunol 2022;13:1017990. [DOI: 10.3389/fimmu.2022.1017990] [Reference Citation Analysis]
78 Fridrichova I, Kalinkova L, Ciernikova S. Clinical Relevancy of Circulating Tumor Cells in Breast Cancer: Epithelial or Mesenchymal Characteristics, Single Cells or Clusters? IJMS 2022;23:12141. [DOI: 10.3390/ijms232012141] [Reference Citation Analysis]
79 Tommasi C, Pellegrino B, Diana A, Palafox Sancez M, Orditura M, Scartozzi M, Musolino A, Solinas C. The Innate Immune Microenvironment in Metastatic Breast Cancer. JCM 2022;11:5986. [DOI: 10.3390/jcm11205986] [Reference Citation Analysis]
80 Gao S, Feng X, Wu Z, Kajigaya S, Young NS. CellCallEXT: Analysis of Ligand-Receptor and Transcription Factor Activities in Cell-Cell Communication of Tumor Immune Microenvironment. Cancers (Basel) 2022;14:4957. [PMID: 36230879 DOI: 10.3390/cancers14194957] [Reference Citation Analysis]
81 Barth ND, Van Dalen FJ, Karmakar U, Bertolini M, Mendive-Tapia L, Kitamura T, Verdoes M, Vendrell M. Enzyme-Activatable Chemokine Conjugates for In Vivo Targeting of Tumor-Associated Macrophages. Angew Chem Int Ed Engl 2022;61:e202207508. [PMID: 35993914 DOI: 10.1002/anie.202207508] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Saleemi MA, Yahaya N, Zain NNM, Raoov M, Yong YK, Noor NS, Lim V. Antimicrobial and Cytotoxic Effects of Cannabinoids: An Updated Review with Future Perspectives and Current Challenges. Pharmaceuticals (Basel) 2022;15:1228. [PMID: 36297340 DOI: 10.3390/ph15101228] [Reference Citation Analysis]
83 Wang H, Zhou Z, Miao J, Zhu B, Dai X, Zhong Q, Gong F, Gao X, Wu Y. Membrane Bound CRT Fragment Accelerates Tumor Growth of Melanoma B16 Cell In Vivo through Promoting M2 Polarization via TLR4. Journal of Immunology Research 2022;2022:1-12. [DOI: 10.1155/2022/4626813] [Reference Citation Analysis]
84 Li Y, Wilson M, Yang L. Target tumor microenvironment by innate T cells. Front Immunol 2022;13:999549. [DOI: 10.3389/fimmu.2022.999549] [Reference Citation Analysis]
85 Tudorancea IM, Ciorpac M, Stanciu GD, Caratașu C, Săcărescu A, Ignat B, Burlui A, Rezuș E, Creangă I, Alexa-Stratulat T, Tudorancea I, Tamba BI. The Therapeutic Potential of the Endocannabinoid System in Age-Related Diseases. Biomedicines 2022;10:2492. [PMID: 36289755 DOI: 10.3390/biomedicines10102492] [Reference Citation Analysis]
86 Luo B, Zhang S, Tan D, Yu X, Lin J, Wang M, Rai SN. Anlotinib Benefits the αPDL1 Immunotherapy by Activating ROS/JNK/AP-1 Pathway to Upregulate PDL1 Expression in Colorectal Cancer. Oxidative Medicine and Cellular Longevity 2022;2022:1-18. [DOI: 10.1155/2022/8965903] [Reference Citation Analysis]
87 Zhang L, Chen F, Liang X, Ponnusamy M, Qin H, Lin Z. Crosstalk among long non-coding RNA, tumor-associated macrophages and small extracellular vesicles in tumorigenesis and dissemination. Front Oncol 2022;12:1008856. [DOI: 10.3389/fonc.2022.1008856] [Reference Citation Analysis]
88 Kim J, Thomas SN. Opportunities for Nitric Oxide in Potentiating Cancer Immunotherapy. Pharmacol Rev 2022;74:1146-75. [PMID: 36180108 DOI: 10.1124/pharmrev.121.000500] [Reference Citation Analysis]
89 Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022;189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
90 Guo W, Zhou B, Yang Z, Liu X, Huai Q, Guo L, Xue X, Tan F, Li Y, Xue Q, Gao S, He J. Integrating microarray-based spatial transcriptomics and single-cell RNA-sequencing reveals tissue architecture in esophageal squamous cell carcinoma. eBioMedicine 2022;84:104281. [DOI: 10.1016/j.ebiom.2022.104281] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
91 Zhang Y, Qiu J, Jia X, Ke Y, Zhang M, Stieg D, Liu W, Liu L, Wang L, Jiang B. METTL3-mediated N6-methyladenosine modification and HDAC5/YY1 promote IFFO1 downregulation in tumor development and chemo-resistance. Cancer Letters 2022. [DOI: 10.1016/j.canlet.2022.215971] [Reference Citation Analysis]
92 Zhang Y, Zhang W, Zheng L, Guo Q. The roles and targeting options of TRIM family proteins in tumor. Front Pharmacol 2022;13:999380. [DOI: 10.3389/fphar.2022.999380] [Reference Citation Analysis]
93 Xu H, Piao L, Wu Y, Liu X. IFN-γ enhances the antitumor activity of attenuated salmonella-mediated cancer immunotherapy by increasing M1 macrophage and CD4 and CD8 T cell counts and decreasing neutrophil counts. Front Bioeng Biotechnol 2022;10:996055. [DOI: 10.3389/fbioe.2022.996055] [Reference Citation Analysis]
94 Rallis KS, Corrigan AE, Dadah H, Stanislovas J, Zamani P, Makker S, Szabados B, Sideris M. IL-10 in cancer: an essential thermostatic regulator between homeostatic immunity and inflammation - a comprehensive review. Future Oncol 2022. [PMID: 36172856 DOI: 10.2217/fon-2022-0063] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
95 Tang WW, Bauer KM, Barba C, Ekiz HA, O'Connell RM. miR-aculous new avenues for cancer immunotherapy. Front Immunol 2022;13:929677. [PMID: 36248881 DOI: 10.3389/fimmu.2022.929677] [Reference Citation Analysis]
96 Li J, Zhao C, Wang D, Wang S, Dong H, Wang D, Yang Y, Li J, Cui F, He X, Qin J. ZIM3 activation of CCL25 expression in pulmonary metastatic nodules of osteosarcoma recruits M2 macrophages to promote metastatic growth. Cancer Immunol Immunother 2022. [DOI: 10.1007/s00262-022-03300-7] [Reference Citation Analysis]
97 Rangel-pozzo A, Wechsler J, Groult J, Da Meda L, Lebbe C, Mai S. Telomere-Associated Changes in Nuclear Architecture of Cancer-Associated Macrophage-like Cells in Liquid Biopsies from Melanoma Patients. Biomedicines 2022;10:2391. [DOI: 10.3390/biomedicines10102391] [Reference Citation Analysis]
98 Li Z, Yu Q, Zhu Q, Yang X, Li Z, Fu J. Applications of machine learning in tumor-associated macrophages. Front Immunol 2022;13:985863. [DOI: 10.3389/fimmu.2022.985863] [Reference Citation Analysis]
99 Ibahim MJ, Abdul Hamid Hasani N, Sham FR, Omar E, Syed Ahmad Fuad SB, Abdul Karim MK, Hasan N. Development of flow cytometry analysis on measuring tumour immune microenvironment (TIME) in mice bearing EMT6 tumour model. APJMBB 2022. [DOI: 10.35118/apjmbb.2022.030.3.12] [Reference Citation Analysis]
100 Vu SH, Vetrivel P, Kim J, Lee MS. Cancer Resistance to Immunotherapy: Molecular Mechanisms and Tackling Strategies. Int J Mol Sci 2022;23:10906. [PMID: 36142818 DOI: 10.3390/ijms231810906] [Reference Citation Analysis]
101 Yang J, Tan CL, Long D, Liang Y, Zhou L, Liu XB, Chen YH. Analysis of invasiveness and tumor-associated macrophages infiltration in solid pseudopapillary tumors of pancreas. World J Gastroenterol 2022; 28(34): 5047-5057 [DOI: 10.3748/wjg.v28.i34.5047] [Reference Citation Analysis]
102 Chen Z, Yang J, Li Y, Zeng W, Bai Y, Ding C, Xu C, Li C, Chen J, Ju S, Tang L, Zhao J. Integration of single-cell and bulk RNA-seq to establish a predictive signature based on the differentiation trajectory of M2 macrophages in lung adenocarcinoma. Front Genet 2022;13:1010440. [DOI: 10.3389/fgene.2022.1010440] [Reference Citation Analysis]
103 Busato F, Khouzai BE, Mognato M. Biological Mechanisms to Reduce Radioresistance and Increase the Efficacy of Radiotherapy: State of the Art. IJMS 2022;23:10211. [DOI: 10.3390/ijms231810211] [Reference Citation Analysis]
104 Yao Z, Zhang H, Zhang X, Zhang Z, Jie J, Xie K, Li F, Tan W. Identification of tumor microenvironment-related signature for predicting prognosis and immunotherapy response in patients with bladder cancer. Front Genet 2022;13:923768. [DOI: 10.3389/fgene.2022.923768] [Reference Citation Analysis]
105 Xiong K, Qi M, Stoeger T, Zhang J, Chen S. The role of tumor-associated macrophages and soluble mediators in pulmonary metastatic melanoma. Front Immunol 2022;13:1000927. [DOI: 10.3389/fimmu.2022.1000927] [Reference Citation Analysis]
106 Lian J, Liang Y, Zhang H, Lan M, Ye Z, Lin B, Qiu X, Zeng J. The role of polyamine metabolism in remodeling immune responses and blocking therapy within the tumor immune microenvironment. Front Immunol 2022;13:912279. [DOI: 10.3389/fimmu.2022.912279] [Reference Citation Analysis]
107 Huang A, Lv B, Zhang Y, Yang J, Li J, Li C, Yu Z, Xia J. Construction of a tumor immune infiltration macrophage signature for predicting prognosis and immunotherapy response in liver cancer. Front Mol Biosci 2022;9:983840. [DOI: 10.3389/fmolb.2022.983840] [Reference Citation Analysis]
108 Guo H, Chen Y, Wang J, Ma H, Liu Y. A critical review: anti-cancer effects of Brucea javanica and the mechanisms. Pharmacological Research - Modern Chinese Medicine 2022;4:100133. [DOI: 10.1016/j.prmcm.2022.100133] [Reference Citation Analysis]
109 Conway JW, Rawson RV, Lo S, Ahmed T, Vergara IA, Gide TN, Attrill GH, Carlino MS, Saw RPM, Thompson JF, Spillane AJ, Shannon KF, Shivalingam B, Menzies AM, Wilmott JS, Long GV, Scolyer RA, Pires da Silva I. Unveiling the tumor immune microenvironment of organ-specific melanoma metastatic sites. J Immunother Cancer 2022;10:e004884. [PMID: 36096531 DOI: 10.1136/jitc-2022-004884] [Reference Citation Analysis]
110 Deng Z, Wu S, Wang Y, Shi D. Circulating tumor cell isolation for cancer diagnosis and prognosis. eBioMedicine 2022;83:104237. [DOI: 10.1016/j.ebiom.2022.104237] [Reference Citation Analysis]
111 Najafi A, Keykhaee M, Khorramdelazad H, Karimi MY, Nejatbakhsh Samimi L, Aghamohamadi N, Karimi M, Falak R, Khoobi M. Catalase application in cancer therapy: Simultaneous focusing on hypoxia attenuation and macrophage reprogramming. Biomedicine & Pharmacotherapy 2022;153:113483. [DOI: 10.1016/j.biopha.2022.113483] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
112 Yang Y, Wang Y, Ahn J, Kim B, Choi J. CCL2 overexpression is associated with paclitaxel resistance in ovarian cancer cells via autocrine signaling and macrophage recruitment. Biomedicine & Pharmacotherapy 2022;153:113474. [DOI: 10.1016/j.biopha.2022.113474] [Reference Citation Analysis]
113 Yen J, Huang W, Lin S, Huang Y, Chio W, Tsay GJ, Hung M, Huang S. Metabolic remodeling in tumor-associated macrophages contributing to antitumor activity of cryptotanshinone by regulating TRAF6-ASK1 axis. Molecular Therapy - Oncolytics 2022;26:158-174. [DOI: 10.1016/j.omto.2022.06.008] [Reference Citation Analysis]
114 Shi Z, Tu J, Ying Y, Diao Y, Zhang P, Liao S, Xiong Z, Huang S. CC Chemokine Ligand-2: A Promising Target for Overcoming Anticancer Drug Resistance. Cancers 2022;14:4251. [DOI: 10.3390/cancers14174251] [Reference Citation Analysis]
115 Tari H, Kessler K, Trahearn N, Werner B, Vinci M, Jones C, Sottoriva A. Quantification of spatial subclonal interactions enhancing the invasive phenotype of pediatric glioma. Cell Rep 2022;40:111283. [PMID: 36044867 DOI: 10.1016/j.celrep.2022.111283] [Reference Citation Analysis]
116 Lv L, Huang RH, Li J, Xu J, Gao W. Impact of NSCLC metabolic remodeling on immunotherapy effectiveness. Biomark Res 2022;10:66. [PMID: 36038935 DOI: 10.1186/s40364-022-00412-1] [Reference Citation Analysis]
117 Friedrich V, Choi HW. The Urinary Microbiome: Role in Bladder Cancer and Treatment. Diagnostics 2022;12:2068. [DOI: 10.3390/diagnostics12092068] [Reference Citation Analysis]
118 Wang J, Yang Y, Du B. Clinical Characterization and Prognostic Value of TPM4 and Its Correlation with Epithelial–Mesenchymal Transition in Glioma. Brain Sciences 2022;12:1120. [DOI: 10.3390/brainsci12091120] [Reference Citation Analysis]
119 van der Woude H, Hally KE, Currie MJ, Gasser O, Henry CE. Importance of the endometrial immune environment in endometrial cancer and associated therapies. Front Oncol 2022;12:975201. [DOI: 10.3389/fonc.2022.975201] [Reference Citation Analysis]
120 Kariya Y, Kariya Y. Osteopontin in Cancer: Mechanisms and Therapeutic Targets. IJTM 2022;2:419-47. [DOI: 10.3390/ijtm2030033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Yan M, Zheng M, Niu R, Yang X, Tian S, Fan L, Li Y, Zhang S. Roles of tumor-associated neutrophils in tumor metastasis and its clinical applications. Front Cell Dev Biol 2022;10:938289. [DOI: 10.3389/fcell.2022.938289] [Reference Citation Analysis]
122 Cao S, Hung YW, Wang YC, Chung Y, Qi Y, Ouyang C, Zhong X, Hu W, Coblentz A, Maghami E, Sun Z, Lin HH, Ann DK. Glutamine is essential for overcoming the immunosuppressive microenvironment in malignant salivary gland tumors. Theranostics 2022;12:6038-56. [PMID: 35966597 DOI: 10.7150/thno.73896] [Reference Citation Analysis]
123 Li W, Wang F, Guo R, Bian Z, Song Y. Targeting macrophages in hematological malignancies: recent advances and future directions. J Hematol Oncol 2022;15:110. [PMID: 35978372 DOI: 10.1186/s13045-022-01328-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
124 Chen J, Zhao D, Zhang L, Zhang J, Xiao Y, Wu Q, Wang Y, Zhan Q. Tumor-associated macrophage (TAM)-derived CCL22 induces FAK addiction in esophageal squamous cell carcinoma (ESCC). Cell Mol Immunol 2022;19:1054-1066. [DOI: 10.1038/s41423-022-00903-z] [Reference Citation Analysis]
125 Wang X, Brea L, Lu X, Gritsina G, Park SH, Xie W, Zhao JC, Yu J. FOXA1 inhibits hypoxia programs through transcriptional repression of HIF1A. Oncogene 2022. [PMID: 35931888 DOI: 10.1038/s41388-022-02423-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Ohya S, Matsui M, Kajikuri J, Kito H, Endo K. Downregulation of IL-8 and IL-10 by the Activation of Ca2+-Activated K+ Channel KCa3.1 in THP-1-Derived M2 Macrophages. IJMS 2022;23:8603. [DOI: 10.3390/ijms23158603] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
127 Kim H, Park H, Chang HW, Back JH, Lee SJ, Park YE, Kim EH, Hong Y, Kwak G, Kwon IC, Lee JE, Lee YS, Kim SY, Yang Y, Kim SH. Exosome-guided direct reprogramming of tumor-associated macrophages from protumorigenic to antitumorigenic to fight cancer. Bioactive Materials 2022. [DOI: 10.1016/j.bioactmat.2022.07.021] [Reference Citation Analysis]
128 Abd El-fattah EE, Zakaria AY. Metformin modulate immune fitness in hepatocellular carcinoma: Molecular and cellular approach. International Immunopharmacology 2022;109:108889. [DOI: 10.1016/j.intimp.2022.108889] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
129 Nengroo MA, Verma A, Datta D. Cytokine chemokine network in tumor microenvironment: Impact on CSC properties and therapeutic applications. Cytokine 2022;156:155916. [DOI: 10.1016/j.cyto.2022.155916] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Zhou WH, Wang Y, Yan C, Du WD, Al-Aroomi MA, Zheng L, Lin SF, Gao JX, Jiang S, Wang ZX, Sun CF, Liu FY. CC chemokine receptor 7 promotes macrophage recruitment and induces M2-polarization through CC chemokine ligand 19&21 in oral squamous cell carcinoma. Discov Oncol 2022;13:67. [PMID: 35904690 DOI: 10.1007/s12672-022-00533-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
131 Li X, Chen L, Peng X, Zhan X. Progress of tumor-associated macrophages in the epithelial-mesenchymal transition of tumor. Front Oncol 2022;12:911410. [DOI: 10.3389/fonc.2022.911410] [Reference Citation Analysis]
132 Yadav S, Dwivedi A, Tripathi A. Biology of macrophage fate decision: Implication in inflammatory disorders. Cell Biol Int 2022. [PMID: 35842768 DOI: 10.1002/cbin.11854] [Reference Citation Analysis]
133 Hasan MN, Capuk O, Patel SM, Sun D. The Role of Metabolic Plasticity of Tumor-Associated Macrophages in Shaping the Tumor Microenvironment Immunity. Cancers 2022;14:3331. [DOI: 10.3390/cancers14143331] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
134 Zhang F, Liu H, Duan M, Wang G, Zhang Z, Wang Y, Qian Y, Yang Z, Jiang X. Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol 2022;15. [DOI: 10.1186/s13045-022-01304-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
135 Oh J, Hwa C, Jang D, Shin S, Lee S, Kim J, Lee SE, Jung HR, Oh Y, Jang G, Kwon O, An J, Cho S. Augmentation of the RNA m6A reader signature is associated with poor survival by enhancing cell proliferation and EMT across cancer types. Exp Mol Med. [DOI: 10.1038/s12276-022-00795-z] [Reference Citation Analysis]
136 Bhat AA, Nisar S, Singh M, Ashraf B, Masoodi T, Prasad CP, Sharma A, Maacha S, Karedath T, Hashem S, Yasin SB, Bagga P, Reddy R, Frennaux MP, Uddin S, Dhawan P, Haris M, Macha MA. Cytokine‐ and chemokine‐induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Communications. [DOI: 10.1002/cac2.12295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
137 Kumar A, Taghi Khani A, Sanchez Ortiz A, Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front Immunol 2022;13:901277. [DOI: 10.3389/fimmu.2022.901277] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
138 Wang X, Xu Y, Sun Q, Zhou X, Ma W, Wu J, Zhuang J, Sun C. New insights from the single-cell level: Tumor associated macrophages heterogeneity and personalized therapy. Biomed Pharmacother 2022;153:113343. [PMID: 35785706 DOI: 10.1016/j.biopha.2022.113343] [Reference Citation Analysis]
139 Piao YJ, Kim HS, Han W, Moon WK. Transcriptome analysis of SerpinB2-deficient breast tumors provides insight into deciphering SerpinB2-mediated roles in breast cancer progression. BMC Genomics 2022;23:479. [PMID: 35768767 DOI: 10.1186/s12864-022-08704-4] [Reference Citation Analysis]
140 Deng K, Yang D, Zhou Y. Nanotechnology-Based siRNA Delivery Systems to Overcome Tumor Immune Evasion in Cancer Immunotherapy. Pharmaceutics 2022;14:1344. [DOI: 10.3390/pharmaceutics14071344] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
141 Kamat K, Krishnan V, Dorigo O. Macrophage-derived CCL23 upregulates expression of T-cell exhaustion markers in ovarian cancer. Br J Cancer 2022. [PMID: 35750747 DOI: 10.1038/s41416-022-01887-3] [Reference Citation Analysis]
142 Barik GK, Sahay O, Paul D, Santra MK. Ezrin gone rogue in cancer progression and metastasis: An enticing therapeutic target. Biochim Biophys Acta Rev Cancer 2022;1877:188753. [PMID: 35752404 DOI: 10.1016/j.bbcan.2022.188753] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
143 Lee D, Rosenthal CJ, Penn NE, Dunn ZS, Zhou Y, Yang L. Human γδ T Cell Subsets and Their Clinical Applications for Cancer Immunotherapy. Cancers (Basel) 2022;14:3005. [PMID: 35740670 DOI: 10.3390/cancers14123005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
144 Chen X, Yang M, Yin J, Li P, Zeng S, Zheng G, He Z, Liu H, Wang Q, Zhang F, Chen D. Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal 2022;20:92. [PMID: 35715860 DOI: 10.1186/s12964-022-00888-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
145 Kader A, Kaufmann JO, Mangarova DB, Moeckel J, Brangsch J, Adams LC, Zhao J, Reimann C, Saatz J, Traub H, Buchholz R, Karst U, Hamm B, Makowski MR. Iron Oxide Nanoparticles for Visualization of Prostate Cancer in MRI. Cancers (Basel) 2022;14:2909. [PMID: 35740575 DOI: 10.3390/cancers14122909] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
146 Tuo B, Chen Z, Dang Q, Chen C, Zhang H, Hu S, Sun Z. Roles of exosomal circRNAs in tumour immunity and cancer progression. Cell Death Dis 2022;13:539. [PMID: 35676257 DOI: 10.1038/s41419-022-04949-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
147 Zheng H, Liu H, Li H, Dou W, Wang J, Zhang J, Liu T, Wu Y, Liu Y, Wang X. Characterization of stem cell landscape and identification of stemness-relevant prognostic gene signature to aid immunotherapy in colorectal cancer. Stem Cell Res Ther 2022;13:244. [PMID: 35681225 DOI: 10.1186/s13287-022-02913-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
148 Yamada Y, Sato Y, Nakamura T, Harashima H. Innovative cancer nanomedicine based on immunology, gene editing, intracellular trafficking control. J Control Release 2022;348:357-69. [PMID: 35623492 DOI: 10.1016/j.jconrel.2022.05.033] [Reference Citation Analysis]
149 Li YR, Brown J, Yu Y, Lee D, Zhou K, Dunn ZS, Hon R, Wilson M, Kramer A, Zhu Y, Fang Y, Yang L. Targeting Immunosuppressive Tumor-Associated Macrophages Using Innate T Cells for Enhanced Antitumor Reactivity. Cancers (Basel) 2022;14:2749. [PMID: 35681730 DOI: 10.3390/cancers14112749] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
150 Zhao J, Huang H, Zhao J, Xiong X, Zheng S, Wei X, Zhou S. A hybrid bacterium with tumor-associated macrophage polarization for enhanced photothermal-immunotherapy. Acta Pharmaceutica Sinica B 2022;12:2683-94. [DOI: 10.1016/j.apsb.2021.10.019] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
151 Lellupitiyage Don SS, Mas-Rosario JA, Lin HH, Nguyen EM, Taylor SR, Farkas ME. Macrophage circadian rhythms are differentially affected based on stimuli. Integr Biol (Camb) 2022:zyac007. [PMID: 35652485 DOI: 10.1093/intbio/zyac007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
152 Chiou YS, Lan YM, Lee PS, Lin Q, Nagabhushanam K, Ho CT, Pan MH. Piceatannol Prevents Colon Cancer Progression via Dual-Targeting to M2-Polarized Tumor-Associated Macrophages and the TGF-β1 Positive Feedback Signaling Pathway. Mol Nutr Food Res 2022;:e2200248. [PMID: 35616191 DOI: 10.1002/mnfr.202200248] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
153 Mulvey A, Muggeo-Bertin E, Berthold DR, Herrera FG. Overcoming Immune Resistance With Radiation Therapy in Prostate Cancer. Front Immunol 2022;13:859785. [PMID: 35603186 DOI: 10.3389/fimmu.2022.859785] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
154 Pu Y, Ji Q. Tumor-Associated Macrophages Regulate PD-1/PD-L1 Immunosuppression. Front Immunol 2022;13:874589. [PMID: 35592338 DOI: 10.3389/fimmu.2022.874589] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
155 Lee SE, Jang G, Lee JW, Park SH, Han HD, Park Y, Kang TH. Improvement of STING-mediated cancer immunotherapy using immune checkpoint inhibitors as a game-changer. Cancer Immunol Immunother 2022. [DOI: 10.1007/s00262-022-03220-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
156 Xiao X, Peng Y, Wang Z, Zhang L, Yang T, Sun Y, Chen Y, Zhang W, Chang X, Huang W, Tian S, Feng Z, Xinhua N, Tang Q, Mao Y. A novel immune checkpoint siglec-15 antibody inhibits LUAD by modulating mφ polarization in TME. Pharmacol Res 2022;:106269. [PMID: 35605813 DOI: 10.1016/j.phrs.2022.106269] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
157 Chang SJ, Chao CT, Kwan AL, Chai CY. The Diagnostic Significance of CXCL13 in M2 Tumor Immune Microenvironment of Human Astrocytoma. Pathol Oncol Res 2022;28:1610230. [PMID: 35570844 DOI: 10.3389/pore.2022.1610230] [Reference Citation Analysis]
158 Giuli MV, Mancusi A, Giuliani E, Screpanti I, Checquolo S. Notch signaling in female cancers: a multifaceted node to overcome drug resistance. Cancer Drug Resist 2021;4:805-36. [PMID: 35582386 DOI: 10.20517/cdr.2021.53] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
159 Yang D, Yang L, Cai J, Li H, Xing Z, Hou Y. Phosphoinositide 3-kinase/Akt and its related signaling pathways in the regulation of tumor-associated macrophages polarization. Mol Cell Biochem 2022. [PMID: 35590082 DOI: 10.1007/s11010-022-04461-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
160 Jorquera-cordero C, Lara P, Cruz LJ, Schomann T, van Hofslot A, de Carvalho TG, Guedes PMDM, Creemers L, Koning RI, Chan AB, de Araujo Junior RF. Extracellular Vesicles from M1-Polarized Macrophages Combined with Hyaluronic Acid and a β-Blocker Potentiate Doxorubicin’s Antitumor Activity by Downregulating Tumor-Associated Macrophages in Breast Cancer. Pharmaceutics 2022;14:1068. [DOI: 10.3390/pharmaceutics14051068] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
161 Lei L, Bai Y, Qin X, Liu J, Huang W, Lv Q. Current Understanding of Hydrogel for Drug Release and Tissue Engineering. Gels 2022;8:301. [DOI: 10.3390/gels8050301] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
162 Golesworthy B, Wang Y, Tanti A, Pacis A, Romero JM, Cuggia A, Domecq C, Bourdel G, Denroche RE, Jang GH, Grant RC, Borgida A, Grünwald BT, Dodd A, Wilson JM, Bourque G, O'Kane GM, Fischer SE, Kron CM, Fiset PO, Omeroglu A, Foulkes WD, Gallinger S, Guiot MC, Gao ZH, Zogopoulos G. Intra-Tumoral CD8+ T-Cell Infiltration and PD-L1 Positivity in Homologous Recombination Deficient Pancreatic Ductal Adenocarcinoma. Front Oncol 2022;12:860767. [PMID: 35547873 DOI: 10.3389/fonc.2022.860767] [Reference Citation Analysis]
163 Han Y, Wang D, Peng L, Huang T, He X, Wang J, Ou C. Single-cell sequencing: a promising approach for uncovering the mechanisms of tumor metastasis. J Hematol Oncol 2022;15:59. [PMID: 35549970 DOI: 10.1186/s13045-022-01280-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
164 Khaliq AM, Erdogan C, Kurt Z, Turgut SS, Grunvald MW, Rand T, Khare S, Borgia JA, Hayden DM, Pappas SG, Govekar HR, Kam AE, Reiser J, Turaga K, Radovich M, Zang Y, Qiu Y, Liu Y, Fishel ML, Turk A, Gupta V, Al-Sabti R, Subramanian J, Kuzel TM, Sadanandam A, Waldron L, Hussain A, Saleem M, El-Rayes B, Salahudeen AA, Masood A. Refining colorectal cancer classification and clinical stratification through a single-cell atlas. Genome Biol 2022;23:113. [PMID: 35538548 DOI: 10.1186/s13059-022-02677-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
165 Zhang N, Shu G, Qiao E, Xu X, Shen L, Lu C, Chen W, Fang S, Yang Y, Song J, Zhao Z, Tu J, Xu M, Chen M, Du Y, Ji J. DNA-Functionalized Liposomes In Vivo Fusion for NIR-II/MRI Guided Pretargeted Ferroptosis Therapy of Metastatic Breast Cancer. ACS Appl Mater Interfaces 2022;14:20603-15. [PMID: 35476429 DOI: 10.1021/acsami.2c01105] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
166 Li Y, Yu Y, Kramer A, Hon R, Wilson M, Brown J, Yang L. An Ex Vivo 3D Tumor Microenvironment-Mimicry Culture to Study TAM Modulation of Cancer Immunotherapy. Cells 2022;11:1583. [DOI: 10.3390/cells11091583] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
167 Liu C, Ding X, Wei C, Pei Y, Meng F, Zhong Y, Liu Y. LncRNA LNCOC1 is Upregulated in Melanoma and Serves as a Potential Regulatory Target of miR-124 to Suppress Cancer Cell Invasion and Migration. Clin Cosmet Investig Dermatol 2022;15:751-62. [PMID: 35502349 DOI: 10.2147/CCID.S359786] [Reference Citation Analysis]
168 Kim Y, Kim D, Sung WJ, Hong J. High-Grade Endometrial Stromal Sarcoma: Molecular Alterations and Potential Immunotherapeutic Strategies. Front Immunol 2022;13:837004. [PMID: 35242139 DOI: 10.3389/fimmu.2022.837004] [Reference Citation Analysis]
169 Luo W, Napoleon JV, Zhang F, Lee YG, Wang B, Putt KS, Low PS. Repolarization of Tumor-Infiltrating Myeloid Cells for Augmentation of CAR T Cell Therapies. Front Immunol 2022;13:816761. [PMID: 35250995 DOI: 10.3389/fimmu.2022.816761] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
170 Cao S, Hung Y, Wang Y, Chung Y, Qi Y, Ouyang C, Zhong X, Hu W, Coblentz A, Maghami E, Sun Z, Lin HH, Ann DK. Glutamine is essential for overcoming the immunosuppressive microenvironment in malignant salivary gland tumors.. [DOI: 10.1101/2022.04.29.490103] [Reference Citation Analysis]
171 Zhou W, Du W, Li Y, Al-aroomi MA, Yan C, Wang Y, Zhang Z, Liu F, Sun C. The Overexpression of Fibronectin 1 Promotes Cancer Progression and Associated with M2 Macrophages Polarization in Head and Neck Squamous Cell Carcinoma Patients. IJGM 2022;Volume 15:5027-42. [DOI: 10.2147/ijgm.s364708] [Reference Citation Analysis]
172 Yadav AK, Lee MC, Lucero MY, Su S, Reinhardt CJ, Chan J. Activity-Based NIR Bioluminescence Probe Enables Discovery of Diet-Induced Modulation of the Tumor Microenvironment via Nitric Oxide. ACS Cent Sci 2022;8:461-72. [PMID: 35505872 DOI: 10.1021/acscentsci.1c00317] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
173 Malla R, Padmaraju V, Kundrapu DB. Tumor-associated macrophages: Potential target of natural compounds for management of breast cancer. Life Sci 2022;301:120572. [PMID: 35489567 DOI: 10.1016/j.lfs.2022.120572] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
174 Gonzalez-callejo P, Guo Z, Ziglari T, Claudio N, Oshimori N, Seras-franzoso J, Pucci F. Cancer stem cell-derived extracellular vesicles preferentially target MHC-II– macrophages and PD1+ T cells in the tumor microenvironment.. [DOI: 10.1101/2022.04.26.489579] [Reference Citation Analysis]
175 Huang M, Dong W, Xie R, Wu J, Su Q, Li W, Yao K, Chen Y, Zhou Q, Zhang Q, Li W, Cheng L, Peng S, Chen S, Huang J, Chen X, Lin T. HSF1 facilitates the multistep process of lymphatic metastasis in bladder cancer via a novel PRMT5-WDR5-dependent transcriptional program. Cancer Commun (Lond) 2022. [PMID: 35434944 DOI: 10.1002/cac2.12284] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
176 Hu Y, Sun Y, Wan C, Dai X, Wu S, Lo PC, Huang J, Lovell JF, Jin H, Yang K. Microparticles: biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research. J Nanobiotechnology 2022;20:189. [PMID: 35418077 DOI: 10.1186/s12951-022-01358-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
177 Liu K, Cui J, Zhan Y, Ouyang Q, Lu Q, Yang D, Li X, Yin J. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022;21. [DOI: 10.1186/s12943-022-01561-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
178 Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, Mirzaei S, Sethi G. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol 2022;:103680. [PMID: 35405273 DOI: 10.1016/j.critrevonc.2022.103680] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
179 Huang M, Xiong D, Pan J, Zhang Q, Wang Y, Myers CR, Johnson BD, Hardy M, Kalyanaraman B, You M. Prevention of Tumor Growth and Dissemination by In Situ Vaccination with Mitochondria-Targeted Atovaquone. Adv Sci (Weinh) 2022;9:e2101267. [PMID: 35243806 DOI: 10.1002/advs.202101267] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
180 Yao X, Chen D, Zhao B, Yang B, Jin Z, Fan M, Tao G, Qin S, Yang W, He Q. Acid-Degradable Hydrogen-Generating Metal-Organic Framework for Overcoming Cancer Resistance/Metastasis and Off-Target Side Effects. Adv Sci (Weinh) 2022;9:e2101965. [PMID: 35098699 DOI: 10.1002/advs.202101965] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
181 Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Front Immunol 2022;13:830292. [PMID: 35211124 DOI: 10.3389/fimmu.2022.830292] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
182 Kuske M, Haist M, Jung T, Grabbe S, Bros M. Immunomodulatory Properties of Immune Checkpoint Inhibitors-More than Boosting T-Cell Responses? Cancers (Basel) 2022;14:1710. [PMID: 35406483 DOI: 10.3390/cancers14071710] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
183 Yang H, Yan M, Li W, Xu L. SIRPα and PD1 expression on tumor-associated macrophage predict prognosis of intrahepatic cholangiocarcinoma. J Transl Med 2022;20:140. [PMID: 35317832 DOI: 10.1186/s12967-022-03342-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
184 Akhave N, Bayley EM, Frank M, Behrens C, Zhang J, Chen R, Hu X, Parra ER, Lee W, Swisher S, Solis L, Weissferdt A, Moran C, Kalhor N, Zhang J, Scheet P, Vaporciyan AA, Sepesi B, Gibbons DL, Heymach JV, Lee JJ, Wistuba II, Futreal PA, Zhang J, Fujimoto J, Reuben A. Immunogenomic profiling of lung adenocarcinoma reveals high-grade growth patterns are associated with an immunogenic tumor microenvironment.. [DOI: 10.1101/2022.03.17.22272385] [Reference Citation Analysis]
185 Zhang C, Ma Y, Zhang J, Kuo JC, Zhang Z, Xie H, Zhu J, Liu T. Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy. Molecules 2022;27:1943. [DOI: 10.3390/molecules27061943] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
186 Tan LY, Cockshell MP, Moore E, Myo Min KK, Ortiz M, Johan MZ, Ebert B, Ruszkiewicz A, Brown MP, Ebert LM, Bonder CS. Vasculogenic mimicry structures in melanoma support the recruitment of monocytes. OncoImmunology 2022;11:2043673. [DOI: 10.1080/2162402x.2022.2043673] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
187 Jiang Y, Gu H, Zheng X, Pan B, Liu P, Zheng M. Pretreatment C-Reactive Protein/Albumin Ratio is Associated With Poor Survival in Patients With 2018 FIGO Stage IB-IIA HPV-Positive Cervical Cancer. Pathol Oncol Res 2021;27:1609946. [PMID: 34992504 DOI: 10.3389/pore.2021.1609946] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
188 Conod A, Silvano M, Ruiz I Altaba A. On the origin of metastases: Induction of pro-metastatic states after impending cell death via ER stress, reprogramming, and a cytokine storm. Cell Rep 2022;38:110490. [PMID: 35263600 DOI: 10.1016/j.celrep.2022.110490] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
189 Carpen L, Falvo P, Orecchioni S, Mitola G, Hillje R, Mazzara S, Mancuso P, Pileri S, Raveane A, Bertolini F. A single-cell transcriptomic landscape of innate and adaptive intratumoral immunity in triple negative breast cancer during chemo- and immunotherapies. Cell Death Discov 2022;8:106. [PMID: 35260564 DOI: 10.1038/s41420-022-00893-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
190 Haegebaert RM, Kempers M, Ceelen W, Lentacker I, Remaut K. Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. European Journal of Pharmaceutics and Biopharmaceutics 2022;172:16-30. [DOI: 10.1016/j.ejpb.2022.01.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
191 Kim EH, Lee J, Kwak G, Jang H, Kim H, Cho H, Jang Y, Choi J, Chi S, Kim K, Kwon IC, Yang Y, Kim SH. PDL1-binding peptide/anti-miRNA21 conjugate as a therapeutic modality for PD-L1high tumors and TAMs. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.02.031] [Reference Citation Analysis]
192 Kim C, Kong G, Lee H, Tran Q, Vo TT, Kwon SH, Park J, Kim S, Park J. Scavenger receptor class F member 2 (SCARF2) as a novel therapeutic target in glioblastoma. Toxicol Res . [DOI: 10.1007/s43188-022-00125-5] [Reference Citation Analysis]
193 Pandey PR, Young KH, Kumar D, Jain N. RNA-mediated immunotherapy regulating tumor immune microenvironment: next wave of cancer therapeutics. Mol Cancer 2022;21. [DOI: 10.1186/s12943-022-01528-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
194 Dotse E, Lim KH, Wang M, Wijanarko KJ, Chow KT. An Immunological Perspective of Circulating Tumor Cells as Diagnostic Biomarkers and Therapeutic Targets. Life 2022;12:323. [DOI: 10.3390/life12020323] [Reference Citation Analysis]
195 Carlsen L, Huntington KE, El-deiry WS. Immunotherapy for Colorectal Cancer: Mechanisms and Predictive Biomarkers. Cancers 2022;14:1028. [DOI: 10.3390/cancers14041028] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
196 Liu Z, Ji X, He D, Zhang R, Liu Q, Xin T. Nanoscale Drug Delivery Systems in Glioblastoma. Nanoscale Res Lett 2022;17:27. [PMID: 35171358 DOI: 10.1186/s11671-022-03668-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
197 Tagirasa R, Yoo E. Role of Serine Proteases at the Tumor-Stroma Interface. Front Immunol 2022;13:832418. [DOI: 10.3389/fimmu.2022.832418] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
198 Gustafsson J, Roshanzamir F, Hagnestål A, Robinson JL, Nielsen J. Cellular limitation of enzymatic capacity explains glutamine addiction in cancers.. [DOI: 10.1101/2022.02.08.479584] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
199 Souza LCDME, Faletti A, Veríssimo CP, Stelling MP, Borges HL. p53 Signaling on Microenvironment and Its Contribution to Tissue Chemoresistance. Membranes 2022;12:202. [DOI: 10.3390/membranes12020202] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
200 Wang J, Li Y, Zhang C, Chen X, Zhu L, Luo T. Characterization of diagnostic and prognostic significance of cell cycle-linked genes in hepatocellular carcinoma. Transl Cancer Res 2021;10:4636-51. [PMID: 35116320 DOI: 10.21037/tcr-21-1145] [Reference Citation Analysis]
201 Yoo YJ, Lee CH, Park SH, Lim YT. Nanoparticle-based delivery strategies of multifaceted immunomodulatory RNA for cancer immunotherapy. Journal of Controlled Release 2022. [DOI: 10.1016/j.jconrel.2022.01.047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
202 Tiwari JK, Negi S, Kashyap M, Nizamuddin S, Singh A, Khattri A. Pan-Cancer Analysis Shows Enrichment of Macrophages, Overexpression of Checkpoint Molecules, Inhibitory Cytokines, and Immune Exhaustion Signatures in EMT-High Tumors. Front Oncol 2021;11:793881. [PMID: 35096592 DOI: 10.3389/fonc.2021.793881] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
203 Zhang S, Xie F, Li K, Zhang H, Yin Y, Yu Y, Lu G, Zhang S, Wei Y, Xu K, Wu Y, Jin H, Xiao L, Bao L, Xu C, Li Y, Lu Y, Gao J. Gold nanoparticle-directed autophagy intervention for antitumor immunotherapy via inhibiting tumor-associated macrophage M2 polarization. Acta Pharmaceutica Sinica B 2022. [DOI: 10.1016/j.apsb.2022.02.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
204 Emami F, Banstola A, Jeong J, Yook S. Cetuximab-anchored gold nanorod mediated photothermal ablation of breast cancer cell in spheroid model embedded with tumor associated macrophage. Journal of Industrial and Engineering Chemistry 2022;106:177-88. [DOI: 10.1016/j.jiec.2021.10.029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
205 Jo H, Seo H, Gil D, Park Y, Han H, Han H, Thimmulappa RK, Kim SC, Kim J. Single-Cell RNA Sequencing of Human Pluripotent Stem Cell-Derived Macrophages for Quality Control of The Cell Therapy Product. Front Genet 2022;12:658862. [DOI: 10.3389/fgene.2021.658862] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
206 Kim H, Kim SY, Kim J, Kim JE, Hong YS, Han B, Tak E, Ryu Y, Kim S, Kim TW. Dynamic increase of M2 macrophages is associated with disease progression of colorectal cancers following cetuximab-based treatment. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-05694-x] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
207 Palacios-Acedo AL, Langiu M, Crescence L, Mège D, Dubois C, Panicot-Dubois L. Platelet and Cancer-Cell Interactions Modulate Cancer-Associated Thrombosis Risk in Different Cancer Types. Cancers (Basel) 2022;14:730. [PMID: 35159000 DOI: 10.3390/cancers14030730] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
208 Ding X, Sun X, Cai H, Wu L, Liu Y, Zhao Y, Zhou D, Yu G, Zhou X. Engineering Macrophages via Nanotechnology and Genetic Manipulation for Cancer Therapy. Front Oncol 2021;11:786913. [PMID: 35070992 DOI: 10.3389/fonc.2021.786913] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
209 Wu K, Zeng J, Shi X, Xie J, Li Y, Zheng H, Peng G, Zhu G, Tang D, Wu S. Targeting TIGIT Inhibits Bladder Cancer Metastasis Through Suppressing IL-32. Front Pharmacol 2021;12:801493. [PMID: 35069212 DOI: 10.3389/fphar.2021.801493] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
210 Niu Y, Chen J, Qiao Y. Epigenetic Modifications in Tumor-Associated Macrophages: A New Perspective for an Old Foe. Front Immunol 2022;13:836223. [DOI: 10.3389/fimmu.2022.836223] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
211 Liu Y, Shang W, Liu H, Hui H, Wu J, Zhang W, Gao P, Guo K, Guo Y, Tian J. Biomimetic manganese-eumelanin nanocomposites for combined hyperthermia-immunotherapy against prostate cancer. J Nanobiotechnol 2022;20. [DOI: 10.1186/s12951-022-01248-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
212 Langiu M, Palacios-Acedo AL, Crescence L, Mege D, Dubois C, Panicot-Dubois L. Neutrophils, Cancer and Thrombosis: The New Bermuda Triangle in Cancer Research. Int J Mol Sci 2022;23:1257. [PMID: 35163180 DOI: 10.3390/ijms23031257] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
213 Kenry, Eschle BK, Andreiuk B, Gokhale PC, Mitragotri S. Differential Macrophage Responses to Gold Nanostars and Their Implication for Cancer Immunotherapy. Advanced Therapeutics. [DOI: 10.1002/adtp.202100198] [Reference Citation Analysis]
214 Fan CS, Chen CC, Chen LL, Chua KV, Hung HC, Hsu JT, Huang TS. Extracellular HSP90α Induces MyD88-IRAK Complex-Associated IKKα/β-NF-κB/IRF3 and JAK2/TYK2-STAT-3 Signaling in Macrophages for Tumor-Promoting M2-Polarization. Cells 2022;11:229. [PMID: 35053345 DOI: 10.3390/cells11020229] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
215 Yu X, Mi S, Ye J, Lou G. Aberrant lipid metabolism in cancer cells and tumor microenvironment: the player rather than bystander in cancer progression and metastasis. J Cancer 2021;12:7498-506. [PMID: 35003369 DOI: 10.7150/jca.64833] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
216 Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O'Brien-Simpson NM. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Front Oncol 2021;11:788365. [PMID: 34988021 DOI: 10.3389/fonc.2021.788365] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
217 Rubio C, Avendaño-Ortiz J, Ruiz-Palomares R, Karaivanova V, Alberquilla O, Sánchez-Domínguez R, Casalvilla-Dueñas JC, Montalbán-Hernández K, Lodewijk I, Rodríguez-Izquierdo M, Munera-Maravilla E, Nunes SP, Suárez-Cabrera C, Pérez-Crespo M, Martínez VG, Morales L, Pérez-Escavy M, Alonso-Sánchez M, Lozano-Rodríguez R, Cueto FJ, Aguirre LA, Guerrero-Ramos F, Paramio JM, López-Collazo E, Dueñas M. Toward Tumor Fight and Tumor Microenvironment Remodeling: PBA Induces Cell Cycle Arrest and Reduces Tumor Hybrid Cells' Pluripotency in Bladder Cancer. Cancers (Basel) 2022;14:287. [PMID: 35053451 DOI: 10.3390/cancers14020287] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
218 Choi Y, Kim J, Chae J, Hong J, Park J, Jeong E, Kim H, Tanaka M, Okochi M, Choi J. Surface glycan targeting for cancer nano-immunotherapy. J Control Release 2022:S0168-3659(22)00004-9. [PMID: 34998918 DOI: 10.1016/j.jconrel.2022.01.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
219 Liu M, Yang J, Xu B, Zhang X. Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm (2020) 2021;2:587-617. [PMID: 34977870 DOI: 10.1002/mco2.100] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
220 Jiang J, Mei J, Yi S, Feng C, Ma Y, Liu Y, Liu Y, Chen C. Tumor associated macrophage and microbe: The potential targets of tumor vaccine delivery. Adv Drug Deliv Rev 2022;180:114046. [PMID: 34767863 DOI: 10.1016/j.addr.2021.114046] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
221 Leggett SE, Nelson CM. Tissue Architecture in Cancer Initiation and Progression. Biomarkers of the Tumor Microenvironment 2022. [DOI: 10.1007/978-3-030-98950-7_6] [Reference Citation Analysis]
222 Djamgoz MB, Firmenich L. Novel immunotherapeutic approaches to cancer: Voltage-gated sodium channel expression in immune cells and tumors. Cancer Immunology and Immunotherapy 2022. [DOI: 10.1016/b978-0-12-823397-9.00004-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
223 Yadav K, Pradhan M, Singh D, Singh MR. Macrophage-Associated Disorders: Pathophysiology, Treatment Challenges, and Possible Solutions. Macrophage Targeted Delivery Systems 2022. [DOI: 10.1007/978-3-030-84164-5_4] [Reference Citation Analysis]
224 Chatterjee S. Pediatric CNS Cancer Metastasis and the Immune System: A Dynamic Interplay. Handbook of Cancer and Immunology 2022. [DOI: 10.1007/978-3-030-80962-1_78-1] [Reference Citation Analysis]
225 Poojary SS, Singh MK. Tumor cell metabolism and autophagy as therapeutic targets. Autophagy and Metabolism 2022. [DOI: 10.1016/b978-0-323-99879-6.00003-1] [Reference Citation Analysis]
226 Mir MA, Haq BU. Targeting tumor microenvironment for breast cancer treatment. Role of Tumor Microenvironment in Breast Cancer and Targeted Therapies 2022. [DOI: 10.1016/b978-0-443-18696-7.00008-7] [Reference Citation Analysis]
227 Arora L, Kalia M, Pal D. Role of macrophages in cancer progression and targeted immunotherapies. Advances in Protein Chemistry and Structural Biology 2022. [DOI: 10.1016/bs.apcsb.2022.11.010] [Reference Citation Analysis]
228 de Melo Silva AJ, de Melo Gama JE, de Nascimento CM, Lucena JP, da Costa CJ, Fernandes CJB, Moura DMN, Carvalho H, de Oliveira SA. The Immune System in Liver Cancer: From Beginning to Progression. Interdisciplinary Cancer Research 2022. [DOI: 10.1007/16833_2022_37] [Reference Citation Analysis]
229 Demuytere J, Ernst S, van Ovost J, Cosyns S, Ceelen W. The tumor immune microenvironment in peritoneal carcinomatosis. International Review of Cell and Molecular Biology 2022. [DOI: 10.1016/bs.ircmb.2022.04.015] [Reference Citation Analysis]
230 Arya G, Gupta N, Nimesh S. Chitosan nanoparticles for therapeutic delivery of anticancer drugs. Polysaccharide Nanoparticles 2022. [DOI: 10.1016/b978-0-12-822351-2.00018-8] [Reference Citation Analysis]
231 Alex T, Lang DK, Zakir F, Mirza A, Iqbal Z. The Tumor Microenvironment. Environmental Chemistry for a Sustainable World 2022. [DOI: 10.1007/978-3-031-14848-4_1] [Reference Citation Analysis]
232 Chabeli MS, Wang X, Yinghao L, Chen C, Yang C, Shou Y, Wang S, Chen K. Similarities between wound re-epithelialization and Metastasis in ESCC and the crucial involvement of macrophages: A review. Cancer Treatment and Research Communications 2022;32:100621. [DOI: 10.1016/j.ctarc.2022.100621] [Reference Citation Analysis]
233 Augustine TN, Nweke EE, Fru PN. Macrophage Polarization in the Tumor Microenvironment: Modulation and Mimicry. Handbook of Cancer and Immunology 2022. [DOI: 10.1007/978-3-030-80962-1_90-1] [Reference Citation Analysis]
234 Dulal D, Boring AR, Terrero D, Tiwari AK, Raman D. Shaping of the Immune Landscape by Chemokine Receptors that Impacts the Clinical Outcome in Triple-Negative Breast Cancer. Interdisciplinary Cancer Research 2022. [DOI: 10.1007/16833_2022_20] [Reference Citation Analysis]
235 Aghamir SMK, Khatami F, Yarandi VA, Rezaeian A, Fiorentino M. Overview of liquid biopsy. Liquid Biopsy in Urogenital Cancers and its Clinical Utility 2022. [DOI: 10.1016/b978-0-323-99884-0.00004-5] [Reference Citation Analysis]
236 Wang C, Lu T, Xu R, Luo S, Zhao J, Zhang L. Multi-omics analysis to identify lung squamous carcinoma lactate metabolism-related subtypes and establish related index to predict prognosis and guide immunotherapy. Computational and Structural Biotechnology Journal 2022;20:4756-70. [DOI: 10.1016/j.csbj.2022.08.067] [Reference Citation Analysis]
237 Szulc-kielbik I, Kielbik M. Tumor-Associated Macrophages: Reasons to Be Cheerful, Reasons to Be Fearful. Experientia Supplementum 2022. [DOI: 10.1007/978-3-030-91311-3_4] [Reference Citation Analysis]
238 Raza S, Rajak S, Tewari A, Gupta P, Chattopadhyay N, Sinha RA, Chakravarti B. Multifaceted role of chemokines in solid tumors: From biology to therapy. Semin Cancer Biol 2022;86:1105-21. [PMID: 34979274 DOI: 10.1016/j.semcancer.2021.12.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
239 Balahura L, Lazar A, Dinescu S, Costache M. Tumor Microenvironment Complexity: A Pathological Milieu that Innately Modulates Cancer Progression. Handbook of Cancer and Immunology 2022. [DOI: 10.1007/978-3-030-80962-1_89-1] [Reference Citation Analysis]
240 Khamis Y, Arafat W. Tumor microenvironment manipulation and cancer metastasis (taming the beast). Unraveling the Complexities of Metastasis 2022. [DOI: 10.1016/b978-0-12-821789-4.00003-5] [Reference Citation Analysis]
241 Messex JK, Liou G. Infiltrating Immune Cells in Prostate Cancer and Their Implication in Prostate Cancer Therapy. Interdisciplinary Cancer Research 2022. [DOI: 10.1007/16833_2022_32] [Reference Citation Analysis]
242 Karim MR, Hossain D, Uddin AM, Rume FI. Role of macrophages in tumor development. Recent Advancements in Microbial Diversity 2022. [DOI: 10.1016/b978-0-12-822368-0.00007-4] [Reference Citation Analysis]
243 Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol 2021;10. [DOI: 10.1186/s40164-021-00252-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
244 Kim H, Shin Y, Kim DH. Mechanobiological Implications of Cancer Progression in Space. Front Cell Dev Biol 2021;9:740009. [PMID: 34957091 DOI: 10.3389/fcell.2021.740009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
245 Zhou M, Xie D, Zhou Z, Li L, Huang Y. Spatially targeting of tumor-associated macrophages and cancer cells for suppression of spontaneously metastatic tumor. Nano Res . [DOI: 10.1007/s12274-021-3976-9] [Reference Citation Analysis]
246 Qi L, Ye C, Zhang D, Bai R, Zheng S, Hu W, Yuan Y. The Effects of Differentially-Expressed Homeobox Family Genes on the Prognosis and HOXC6 on Immune Microenvironment Orchestration in Colorectal Cancer. Front Immunol 2021;12:781221. [PMID: 34950145 DOI: 10.3389/fimmu.2021.781221] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
247 Czajka-francuz P, Cisoń-jurek S, Czajka A, Kozaczka M, Wojnar J, Chudek J, Francuz T. Systemic Interleukins’ Profile in Early and Advanced Colorectal Cancer. IJMS 2021;23:124. [DOI: 10.3390/ijms23010124] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
248 Martín-Sabroso C, Torres-Suárez AI, Alonso-González M, Fernández-Carballido A, Fraguas-Sánchez AI. Active Targeted Nanoformulations via Folate Receptors: State of the Art and Future Perspectives. Pharmaceutics 2021;14:14. [PMID: 35056911 DOI: 10.3390/pharmaceutics14010014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
249 Roy SM, Garg V, Barman S, Ghosh C, Maity AR, Ghosh SK. Kinetics of Nanomedicine in Tumor Spheroid as an In Vitro Model System for Efficient Tumor-Targeted Drug Delivery With Insights From Mathematical Models. Front Bioeng Biotechnol 2021;9:785937. [PMID: 34926430 DOI: 10.3389/fbioe.2021.785937] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
250 Xu JX, Wu DH, Ying LW, Hu HG. Immunotherapies for well-differentiated grade 3 gastroenteropancreatic neuroendocrine tumors: A new category in the World Health Organization classification. World J Gastroenterol 2021; 27(47): 8123-8137 [DOI: 10.3748/wjg.v27.i47.8123] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
251 Shen M, Du Y, Ye Y. Tumor-associated macrophages, dendritic cells, and neutrophils: biological roles, crosstalk, and therapeutic relevance. Medical Review 2021;1:222-43. [DOI: 10.1515/mr-2021-0014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
252 Tang X, Sui X, Weng L, Liu Y. SNAIL1: Linking Tumor Metastasis to Immune Evasion. Front Immunol 2021;12:724200. [PMID: 34917071 DOI: 10.3389/fimmu.2021.724200] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
253 Shi D, Mu S, Pu F, Liu J, Zhong B, Hu B, Ni N, Wang H, Luu HH, Haydon RC, Shen L, Zhang Z, He TC, Shao Z. Integrative analysis of immune-related multi-omics profiles identifies distinct prognosis and tumor microenvironment patterns in osteosarcoma. Mol Oncol 2021. [PMID: 34894177 DOI: 10.1002/1878-0261.13160] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
254 Zhou F, Sun X. Cholesterol Metabolism: A Double-Edged Sword in Hepatocellular Carcinoma. Front Cell Dev Biol 2021;9:762828. [PMID: 34869352 DOI: 10.3389/fcell.2021.762828] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
255 Hsu R, Baca Y, Xiu J, Wang R, Bodor JN, Kim C, Khan H, Mamdani H, Nagasaka M, Puri S, Liu SV, Korn WM, Nieva JJ. Molecular characterization of Kita-Kyushu lung cancer antigen (KK-LC-1) expressing carcinomas. Oncotarget 2021;12:2449-58. [PMID: 34917263 DOI: 10.18632/oncotarget.28132] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
256 Xiong K, Sun W, He Y, Fan L. Advances in molecular mechanisms of interaction between Mycobacterium tuberculosis and lung cancer: a narrative review. Transl Lung Cancer Res 2021;10:4012-26. [PMID: 34858788 DOI: 10.21037/tlcr-21-465] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
257 Dorraki N, Ghale-Noie ZN, Ahmadi NS, Keyvani V, Bahadori RA, Nejad AS, Aschner M, Pourghadamyari H, Mollazadeh S, Mirzaei H. miRNA-148b and its role in various cancers. Epigenomics 2021;13:1939-60. [PMID: 34852637 DOI: 10.2217/epi-2021-0155] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
258 Carpen L, Falvo P, Orecchioni S, Mitola G, Hillje R, Mazzara S, Mancuso P, Pileri S, Raveane A, Bertolini F. A single-cell transcriptomic landscape of innate and adaptive intratumoral immunity in triple negative breast cancer during chemo- and immunotherapies.. [DOI: 10.1101/2021.12.01.470716] [Reference Citation Analysis]
259 Liu YJ, Yin SY, Zeng SH, Hu YD, Wang MQ, Huang P, Li JP. Prognostic Value of LHFPL Tetraspan Subfamily Member 6 (LHFPL6) in Gastric Cancer: A Study Based on Bioinformatics Analysis and Experimental Validation. Pharmgenomics Pers Med 2021;14:1483-504. [PMID: 34848995 DOI: 10.2147/PGPM.S332345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
260 Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021;13:6062. [PMID: 34885171 DOI: 10.3390/cancers13236062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
261 Lu JC, Zhang PF, Huang XY, Guo XJ, Gao C, Zeng HY, Zheng YM, Wang SW, Cai JB, Sun QM, Shi YH, Zhou J, Ke AW, Shi GM, Fan J. Amplification of spatially isolated adenosine pathway by tumor-macrophage interaction induces anti-PD1 resistance in hepatocellular carcinoma. J Hematol Oncol 2021;14:200. [PMID: 34838121 DOI: 10.1186/s13045-021-01207-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
262 Newnes HV, Armitage JD, Audsley KM, Bosco A, Waithman J. Directing the Future Breakthroughs in Immunotherapy: The Importance of a Holistic Approach to the Tumour Microenvironment. Cancers (Basel) 2021;13:5911. [PMID: 34885021 DOI: 10.3390/cancers13235911] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
263 Bond KH, Chiba T, Wynne KPH, Vary CPH, Sims-Lucas S, Coburn JM, Oxburgh L. The Extracellular Matrix Environment of Clear Cell Renal Cell Carcinoma Determines Cancer Associated Fibroblast Growth. Cancers (Basel) 2021;13:5873. [PMID: 34884982 DOI: 10.3390/cancers13235873] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
264 Fei L, Ren X, Yu H, Zhan Y. Targeting the CCL2/CCR2 Axis in Cancer Immunotherapy: One Stone, Three Birds? Front Immunol 2021;12:771210. [PMID: 34804061 DOI: 10.3389/fimmu.2021.771210] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
265 Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021;9:7667-704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
266 Singla RK, Sai CS, Chopra H, Behzad S, Bansal H, Goyal R, Gautam RK, Tsagkaris C, Joon S, Singla S, Shen B. Natural Products for the Management of Castration-Resistant Prostate Cancer: Special Focus on Nanoparticles Based Studies. Front Cell Dev Biol 2021;9:745177. [PMID: 34805155 DOI: 10.3389/fcell.2021.745177] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
267 Wang K, Chen X. Autophagic tumor-associated macrophages promote the endothelial mesenchymal transition in lung adenocarcinomas through the FUT4/p-ezrin pathway. J Thorac Dis 2021;13:5973-85. [PMID: 34795945 DOI: 10.21037/jtd-21-1519] [Reference Citation Analysis]
268 Chen J, Lin Z, Liu L, Zhang R, Geng Y, Fan M, Zhu W, Lu M, Lu L, Jia H, Zhang J, Qin LX. GOLM1 exacerbates CD8+ T cell suppression in hepatocellular carcinoma by promoting exosomal PD-L1 transport into tumor-associated macrophages. Signal Transduct Target Ther 2021;6:397. [PMID: 34795203 DOI: 10.1038/s41392-021-00784-0] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
269 Tan NKW, Yap DWT, Tan BKJ, Teo YH, Tan EKH, Chan JY, Lee HY, See A, Toh ST. The association of obstructive sleep apnea with melanoma incidence and mortality: a meta-analysis of 5,276,451 patients. Sleep Med 2021;88:213-20. [PMID: 34794048 DOI: 10.1016/j.sleep.2021.10.027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
270 Kim M, Park SC, Lee DY. Glycyrrhizin as a Nitric Oxide Regulator in Cancer Chemotherapy. Cancers (Basel) 2021;13:5762. [PMID: 34830916 DOI: 10.3390/cancers13225762] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
271 Shi B, Chu J, Huang T, Wang X, Li Q, Gao Q, Xia Q, Luo S. The Scavenger Receptor MARCO Expressed by Tumor-Associated Macrophages Are Highly Associated With Poor Pancreatic Cancer Prognosis. Front Oncol 2021;11:771488. [PMID: 34778091 DOI: 10.3389/fonc.2021.771488] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
272 Yuan X, Huang L, Luo W, Zhao Y, Nashan B, Yu F, Liu Y. Diagnostic and Prognostic Significances of SOX9 in Thymic Epithelial Tumor. Front Oncol 2021;11:708735. [PMID: 34778027 DOI: 10.3389/fonc.2021.708735] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
273 Dudzinski SO, Bader JE, Beckermann KE, Young KL, Hongo R, Madden MZ, Abraham A, Reinfeld BE, Ye X, MacIver NJ, Giorgio TD, Rathmell JC. Leptin Augments Antitumor Immunity in Obesity by Repolarizing Tumor-Associated Macrophages. J Immunol 2021:ji2001152. [PMID: 34772698 DOI: 10.4049/jimmunol.2001152] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
274 Saviana M, Romano G, Le P, Acunzo M, Nana-Sinkam P. Extracellular Vesicles in Lung Cancer Metastasis and Their Clinical Applications. Cancers (Basel) 2021;13:5633. [PMID: 34830787 DOI: 10.3390/cancers13225633] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
275 Vito A, El-Sayes N, Salem O, Wan Y, Mossman KL. Response to FEC Chemotherapy and Oncolytic HSV-1 Is Associated with Macrophage Polarization and Increased Expression of S100A8/A9 in Triple Negative Breast Cancer. Cancers (Basel) 2021;13:5590. [PMID: 34771752 DOI: 10.3390/cancers13215590] [Reference Citation Analysis]
276 Astudillo P. An emergent Wnt5a/YAP/TAZ regulatory circuit and its possible role in cancer. Semin Cell Dev Biol 2021:S1084-9521(21)00264-0. [PMID: 34764023 DOI: 10.1016/j.semcdb.2021.10.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
277 Goswami KK, Bose A, Baral R. Macrophages in tumor: An inflammatory perspective. Clin Immunol 2021;232:108875. [PMID: 34740843 DOI: 10.1016/j.clim.2021.108875] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
278 Mohapatra A, Sathiyamoorthy P, Park IK. Metallic Nanoparticle-Mediated Immune Cell Regulation and Advanced Cancer Immunotherapy. Pharmaceutics 2021;13:1867. [PMID: 34834282 DOI: 10.3390/pharmaceutics13111867] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
279 Lv Q, Pan X, Wang D, Rong Q, Ma B, Xie X, Zhang Y, Wang J, Hu L. Discovery of (Z)-1-(3-((1H-Pyrrol-2-yl)methylene)-2-oxoindolin-6-yl)-3-(isoxazol-3-yl)urea Derivatives as Novel and Orally Highly Effective CSF-1R Inhibitors for Potential Colorectal Cancer Immunotherapy. J Med Chem 2021;64:17184-208. [PMID: 34735158 DOI: 10.1021/acs.jmedchem.1c01184] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
280 Chen Q, Li Y, Gao W, Chen L, Xu W, Zhu X. Exosome-Mediated Crosstalk Between Tumor and Tumor-Associated Macrophages. Front Mol Biosci 2021;8:764222. [PMID: 34722637 DOI: 10.3389/fmolb.2021.764222] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
281 Xu T, Yu S, Zhang J, Wu S. Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J Hematol Oncol 2021;14:181. [PMID: 34717710 DOI: 10.1186/s13045-021-01198-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
282 Elwakeel E, Weigert A. Breast Cancer CAFs: Spectrum of Phenotypes and Promising Targeting Avenues. Int J Mol Sci 2021;22:11636. [PMID: 34769066 DOI: 10.3390/ijms222111636] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
283 Han M, Ryu G, Shin SA, An J, Kim H, Park D, Lee DH, Lee CS. Physiological Roles of Apoptotic Cell Clearance: Beyond Immune Functions. Life (Basel) 2021;11:1141. [PMID: 34833017 DOI: 10.3390/life11111141] [Reference Citation Analysis]
284 Zhang Z, Li B, Xie L, Sang W, Tian H, Li J, Wang G, Dai Y. Metal-Phenolic Network-Enabled Lactic Acid Consumption Reverses Immunosuppressive Tumor Microenvironment for Sonodynamic Therapy. ACS Nano 2021;15:16934-45. [PMID: 34661387 DOI: 10.1021/acsnano.1c08026] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 9.5] [Reference Citation Analysis]
285 El-Guindy DM, Elgarhy LH, Elkholy RA, Ali DA, Helal DS. Potential role of tumor-associated macrophages and CD163/CD68 ratio in mycosis fungoides and Sézary syndrome in correlation with serum sCD163 and CCL22. J Cutan Pathol 2021. [PMID: 34687561 DOI: 10.1111/cup.14155] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
286 Abd El-Fattah EE, Abdelhamid AM. Benzo[a]pyrene immunogenetics and immune archetype reprogramming of lung. Toxicology 2021;463:152994. [PMID: 34678320 DOI: 10.1016/j.tox.2021.152994] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
287 Qiu S, Zhou Y, Kim JT, Bao C, Lee HJ, Chen J. Amentoflavone inhibits tumor necrosis factor-α-induced migration and invasion through AKT/mTOR/S6k1/hedgehog signaling in human breast cancer. Food Funct 2021;12:10196-209. [PMID: 34542136 DOI: 10.1039/d1fo01085a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
288 Rey I, Putra A, Lindarto D, Yusuf F. Relationship between CD 163 Tumor-Associated Macrophages and Colorectal-Cancer Stem Cell Markers. Open Access Maced J Med Sci 2021;9:1381-1386. [DOI: 10.3889/oamjms.2021.7188] [Reference Citation Analysis]
289 Medina-Andrade I, Olguín JE, Guerrero-García S, Espinosa JA, Garduño-Javier E, Hernández-Gómez V, Vaca-Paniagua F, Rodríguez-Sosa M, Terrazas LI. Recruitment of M1 Macrophages May Not Be Critical for Protection against Colitis-Associated Tumorigenesis. Int J Mol Sci 2021;22:11204. [PMID: 34681866 DOI: 10.3390/ijms222011204] [Reference Citation Analysis]
290 Xin L, Zhou LQ, Liu C, Zeng F, Yuan YW, Zhou Q, Li SH, Wu Y, Wang JL, Wu DZ, Lu H. Transfer of LncRNA CRNDE in TAM-derived exosomes is linked with cisplatin resistance in gastric cancer. EMBO Rep 2021;:e52124. [PMID: 34647680 DOI: 10.15252/embr.202052124] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
291 He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics 2021;13:1670. [PMID: 34683963 DOI: 10.3390/pharmaceutics13101670] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
292 Kondou R, Akiyama Y, Iizuka A, Miyata H, Maeda C, Kanematsu A, Watanabe K, Ashizawa T, Nagashima T, Urakami K, Shimoda Y, Ohshima K, Shiomi A, Ohde Y, Terashima M, Uesaka K, Onitsuka T, Nishimura S, Hirashima Y, Hayashi N, Kiyohara Y, Tsubosa Y, Katagiri H, Niwakawa M, Takahashi K, Kashiwagi H, Nakagawa M, Ishida Y, Sugino T, Notsu A, Mori K, Takahashi M, Kenmotsu H, Yamaguchi K. Identification of tumor microenvironment-associated immunological genes as potent prognostic markers in the cancer genome analysis project HOPE. Mol Clin Oncol 2021;15:232. [PMID: 34631056 DOI: 10.3892/mco.2021.2395] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
293 Danella EB, Costa De Medeiros M, D'Silva NJ. Cancer-associated keratinocytes: new members of the microenvironment in head and neck cancer. Mol Cell Oncol 2021;8:1933329. [PMID: 34616868 DOI: 10.1080/23723556.2021.1933329] [Reference Citation Analysis]
294 Zeng J, Wu H, Huang Q, Li J, Yu Z, Zhong Z. Dihydropyrimidine dehydrogenase (DPYD) gene c.1627A>G A/G and G/G genotypes are risk factors for lymph node metastasis and distant metastasis of colorectal cancer. J Clin Lab Anal 2021;35:e24023. [PMID: 34612540 DOI: 10.1002/jcla.24023] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
295 Motta JM, Rumjanek VM, Mantovani A, Locati M. Tumor-Released Products Promote Bone Marrow-Derived Macrophage Survival and Proliferation. Biomedicines 2021;9:1387. [PMID: 34680504 DOI: 10.3390/biomedicines9101387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
296 Khalyfa A, Qiao Z, Raju M, Shyu CR, Coghill L, Ericsson A, Gozal D. Monocarboxylate Transporter-2 Expression Restricts Tumor Growth in a Murine Model of Lung Cancer: A Multi-Omic Analysis. Int J Mol Sci 2021;22:10616. [PMID: 34638954 DOI: 10.3390/ijms221910616] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
297 Jiang M, Li X, Zhang J, Lu Y, Shi Y, Zhu C, Liu Y, Qin B, Luo Z, Du Y, Luo L, Peng L, You J. Dual Inhibition of Endoplasmic Reticulum Stress and Oxidation Stress Manipulates the Polarization of Macrophages under Hypoxia to Sensitize Immunotherapy. ACS Nano 2021;15:14522-34. [PMID: 34414762 DOI: 10.1021/acsnano.1c04068] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
298 Waldenmaier M, Seibold T, Seufferlein T, Eiseler T. Pancreatic Cancer Small Extracellular Vesicles (Exosomes): A Tale of Short- and Long-Distance Communication. Cancers (Basel) 2021;13:4844. [PMID: 34638330 DOI: 10.3390/cancers13194844] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
299 Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, Li Z, Pan CX. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol 2021;14:156. [PMID: 34579759 DOI: 10.1186/s13045-021-01164-5] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 18.0] [Reference Citation Analysis]
300 Lu T, Prakash J. Nanomedicine Strategies to Enhance Tumor Drug Penetration in Pancreatic Cancer. Int J Nanomedicine 2021;16:6313-28. [PMID: 34552327 DOI: 10.2147/IJN.S279192] [Reference Citation Analysis]
301 Ahmad A. Epigenetic regulation of immunosuppressive tumor-associated macrophages through dysregulated microRNAs. Semin Cell Dev Biol 2021:S1084-9521(21)00236-6. [PMID: 34556420 DOI: 10.1016/j.semcdb.2021.09.001] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
302 Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021;13:4661. [PMID: 34572888 DOI: 10.3390/cancers13184661] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
303 Jiang Z, Zhang Y, Zhang Y, Jia Z, Zhang Z, Yang J. Cancer derived exosomes induce macrophages immunosuppressive polarization to promote bladder cancer progression. Cell Commun Signal 2021;19:93. [PMID: 34521440 DOI: 10.1186/s12964-021-00768-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
304 Salbini M, Quarta A, Russo F, Giudetti AM, Citti C, Cannazza G, Gigli G, Vergara D, Gaballo A. Oxidative Stress and Multi-Organel Damage Induced by Two Novel Phytocannabinoids, CBDB and CBDP, in Breast Cancer Cells. Molecules 2021;26:5576. [PMID: 34577048 DOI: 10.3390/molecules26185576] [Reference Citation Analysis]
305 Das S, Shukla N, Singh SS, Kushwaha S, Shrivastava R. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis 2021;26:512-33. [PMID: 34510317 DOI: 10.1007/s10495-021-01687-9] [Cited by in Crossref: 24] [Cited by in F6Publishing: 31] [Article Influence: 12.0] [Reference Citation Analysis]
306 O'Donovan C, Davern M, Donlon NE, Lysaght J, Conroy MJ. Chemokine-targeted therapies: An opportunity to remodel immune profiles in gastro-oesophageal tumours. Cancer Lett 2021;521:224-36. [PMID: 34506844 DOI: 10.1016/j.canlet.2021.09.005] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
307 Roda N, Blandano G, Pelicci PG. Blood Vessels and Peripheral Nerves as Key Players in Cancer Progression and Therapy Resistance. Cancers (Basel) 2021;13:4471. [PMID: 34503281 DOI: 10.3390/cancers13174471] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
308 Xu M, Wang Y, Xia R, Wei Y, Wei X. Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Prolif 2021;54:e13115. [PMID: 34464477 DOI: 10.1111/cpr.13115] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
309 Abdin SM, Paasch D, Morgan M, Lachmann N. CARs and beyond: tailoring macrophage-based cell therapeutics to combat solid malignancies. J Immunother Cancer 2021;9:e002741. [PMID: 34462325 DOI: 10.1136/jitc-2021-002741] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
310 Kuo WT, Chang JM, Chen CC, Tsao N, Chang CP. Autophagy drives plasticity and functional polarization of tumor-associated macrophages. IUBMB Life 2021. [PMID: 34467634 DOI: 10.1002/iub.2543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
311 Yang Y, Guo J, Huang L. Tackling TAMs for Cancer Immunotherapy: It's Nano Time. Trends Pharmacol Sci 2020;41:701-14. [PMID: 32946772 DOI: 10.1016/j.tips.2020.08.003] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 15.0] [Reference Citation Analysis]
312 Gu X, Shi Y, Dong M, Jiang L, Yang J, Liu Z. Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer. Cell Death Dis 2021;12:818. [PMID: 34462422 DOI: 10.1038/s41419-021-04087-8] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
313 Shek D, Akhuba L, Carlino MS, Nagrial A, Moujaber T, Read SA, Gao B, Ahlenstiel G. Immune-Checkpoint Inhibitors for Metastatic Colorectal Cancer: A Systematic Review of Clinical Outcomes. Cancers (Basel) 2021;13:4345. [PMID: 34503155 DOI: 10.3390/cancers13174345] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
314 Chang MM, Wu SZ, Yang SH, Wu CC, Wang CY, Huang BM. FGF9/FGFR1 promotes cell proliferation, epithelial-mesenchymal transition, M2 macrophage infiltration and liver metastasis of lung cancer. Transl Oncol 2021;14:101208. [PMID: 34438248 DOI: 10.1016/j.tranon.2021.101208] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
315 Liu Y, Zhou X, Wang X. Targeting the tumor microenvironment in B-cell lymphoma: challenges and opportunities. J Hematol Oncol 2021;14:125. [PMID: 34404434 DOI: 10.1186/s13045-021-01134-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
316 Talapphet N, Palanisamy S, Li C, Ma N, Prabhu NM, You S. Polysaccharide extracted from Taraxacum platycarpum root exerts immunomodulatory activity via MAPK and NF-κB pathways in RAW264.7 cells. J Ethnopharmacol 2021;281:114519. [PMID: 34390795 DOI: 10.1016/j.jep.2021.114519] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
317 Zhukova OV, Arkhipova EV, Kovaleva TF, Ryabov SA, Ivanova IP, Golovacheva AA, Zykova DA, Zaitsev SD. Immunopharmacological Properties of Methacrylic Acid Polymers as Potential Polymeric Carrier Constituents of Anticancer Drugs. Molecules 2021;26:4855. [PMID: 34443443 DOI: 10.3390/molecules26164855] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
318 Liu C, Zhang W, Wang J, Si T, Xing W. Tumor-associated macrophage-derived transforming growth factor-β promotes colorectal cancer progression through HIF1-TRIB3 signaling. Cancer Sci 2021. [PMID: 34375482 DOI: 10.1111/cas.15101] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
319 Uher O, Huynh TT, Zhu B, Horn LA, Caisova V, Hadrava Vanova K, Medina R, Wang H, Palena C, Chmelar J, Zhuang Z, Zenka J, Pacak K. Identification of Immune Cell Infiltration in Murine Pheochromocytoma during Combined Mannan-BAM, TLR Ligand, and Anti-CD40 Antibody-Based Immunotherapy. Cancers (Basel) 2021;13:3942. [PMID: 34439097 DOI: 10.3390/cancers13163942] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
320 Madsen NH, Nielsen BS, Nhat SL, Skov S, Gad M, Larsen J. Monocyte Infiltration and Differentiation in 3D Multicellular Spheroid Cancer Models. Pathogens 2021;10:969. [PMID: 34451433 DOI: 10.3390/pathogens10080969] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
321 Khalique S, Nash S, Mansfield D, Wampfler J, Attygale A, Vroobel K, Kemp H, Buus R, Cottom H, Roxanis I, Jones T, von Loga K, Begum D, Guppy N, Ramagiri P, Fenwick K, Matthews N, Hubank MJF, Lord CJ, Haider S, Melcher A, Banerjee S, Natrajan R. Quantitative Assessment and Prognostic Associations of the Immune Landscape in Ovarian Clear Cell Carcinoma. Cancers (Basel) 2021;13:3854. [PMID: 34359755 DOI: 10.3390/cancers13153854] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
322 Kuo CY, Yang TH, Tsai PF, Yu CH. Role of the Inflammatory Response of RAW 264.7 Cells in the Metastasis of Novel Cancer Stem-Like Cells. Medicina (Kaunas) 2021;57:778. [PMID: 34440983 DOI: 10.3390/medicina57080778] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
323 Liang Y, Li H, Gan Y, Tu H. Shedding Light on the Role of Neurotransmitters in the Microenvironment of Pancreatic Cancer. Front Cell Dev Biol 2021;9:688953. [PMID: 34395421 DOI: 10.3389/fcell.2021.688953] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
324 Huang W, Chen TQ, Fang K, Zeng ZC, Ye H, Chen YQ. N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. J Hematol Oncol 2021;14:117. [PMID: 34315512 DOI: 10.1186/s13045-021-01129-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 15.0] [Reference Citation Analysis]
325 Thankamony AP, Subbalakshmi AR, Jolly MK, Nair R. Lineage Plasticity in Cancer: The Tale of a Skin-Walker. Cancers (Basel) 2021;13:3602. [PMID: 34298815 DOI: 10.3390/cancers13143602] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
326 Sharma R, Liaw K, Sharma A, Jimenez A, Chang M, Salazar S, Amlani I, Kannan S, Kannan RM. Glycosylation of PAMAM dendrimers significantly improves tumor macrophage targeting and specificity in glioblastoma. J Control Release 2021;337:179-92. [PMID: 34274384 DOI: 10.1016/j.jconrel.2021.07.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
327 Mangal N, Erridge S, Habib N, Sadanandam A, Reebye V, Sodergren MH. Cannabinoids in the landscape of cancer. J Cancer Res Clin Oncol 2021;147:2507-34. [PMID: 34259916 DOI: 10.1007/s00432-021-03710-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
328 Vilchez Mercedes SA, Bocci F, Levine H, Onuchic JN, Jolly MK, Wong PK. Decoding leader cells in collective cancer invasion. Nat Rev Cancer 2021;21:592-604. [PMID: 34239104 DOI: 10.1038/s41568-021-00376-8] [Cited by in Crossref: 25] [Cited by in F6Publishing: 30] [Article Influence: 12.5] [Reference Citation Analysis]
329 Shueng PW, Yu LY, Chiu HC, Chang HC, Chiu YL, Kuo TY, Yen YW, Lo CL. Early phago-/endosomal escape of platinum drugs via ROS-responsive micelles for dual cancer chemo/immunotherapy. Biomaterials 2021;276:121012. [PMID: 34252800 DOI: 10.1016/j.biomaterials.2021.121012] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
330 Baxter MA, Middleton F, Cagney HP, Petty RD. Resistance to immune checkpoint inhibitors in advanced gastro-oesophageal cancers. Br J Cancer 2021. [PMID: 34230609 DOI: 10.1038/s41416-021-01425-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
331 Yu Y, He Z, Ouyang J, Tan Y, Chen Y, Gu Y, Mao L, Ren W, Wang J, Lin L, Wu Z, Liu J, Ou Q, Hu Q, Li A, Chen K, Li C, Lu N, Li X, Su F, Liu Q, Xie C, Yao H. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. EBioMedicine 2021;69:103460. [PMID: 34233259 DOI: 10.1016/j.ebiom.2021.103460] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
332 Liu X, Xie X, Jiang J, Lin M, Zheng E, Qiu W, Yeung I, Zhu M, Li Q, Xia T, Meng H. Use of Nanoformulation to Target Macrophages for Disease Treatment. Adv Funct Mater 2021;31:2104487. [DOI: 10.1002/adfm.202104487] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
333 Kumari S, Advani D, Sharma S, Ambasta RK, Kumar P. Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021;1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Cited by in Crossref: 21] [Cited by in F6Publishing: 27] [Article Influence: 10.5] [Reference Citation Analysis]
334 Rossi M, Carboni S, Di Berardino-Besson W, Riva E, Santiago-Raber ML, Belnoue E, Derouazi M. STING Agonist Combined to a Protein-Based Cancer Vaccine Potentiates Peripheral and Intra-Tumoral T Cell Immunity. Front Immunol 2021;12:695056. [PMID: 34276686 DOI: 10.3389/fimmu.2021.695056] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
335 Zhang Q, Wang J, Yadav DK, Bai X, Liang T. Glucose Metabolism: The Metabolic Signature of Tumor Associated Macrophage. Front Immunol 2021;12:702580. [PMID: 34267763 DOI: 10.3389/fimmu.2021.702580] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
336 Liput KP, Lepczyński A, Ogłuszka M, Nawrocka A, Poławska E, Grzesiak A, Ślaska B, Pareek CS, Czarnik U, Pierzchała M. Effects of Dietary n-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int J Mol Sci 2021;22:6965. [PMID: 34203461 DOI: 10.3390/ijms22136965] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
337 Li Z, Zhang L, Liu FY, Li P, He J, Kirkwood CL, Sohn J, Chan JM, Magner WJ, Kirkwood KL. MKP-1 is required to limit myeloid-cell mediated oral squamous cell carcinoma progression and regional extension. Oral Oncol 2021;120:105401. [PMID: 34182221 DOI: 10.1016/j.oraloncology.2021.105401] [Reference Citation Analysis]
338 Aldawsari MF, Alalaiwe A, Khafagy ES, Al Saqr A, Alshahrani SM, Alsulays BB, Alshehri S, Abu Lila AS, Danish Rizvi SM, Hegazy WAH. Efficacy of SPG-ODN 1826 Nanovehicles in Inducing M1 Phenotype through TLR-9 Activation in Murine Alveolar J774A.1 Cells: Plausible Nano-Immunotherapy for Lung Carcinoma. Int J Mol Sci 2021;22:6833. [PMID: 34202080 DOI: 10.3390/ijms22136833] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
339 Jiménez-Cortegana C, López-Saavedra A, Sánchez-Jiménez F, Pérez-Pérez A, Castiñeiras J, Virizuela-Echaburu JA, de la Cruz-Merino L, Sánchez-Margalet V. Leptin, Both Bad and Good Actor in Cancer. Biomolecules 2021;11:913. [PMID: 34202969 DOI: 10.3390/biom11060913] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
340 Wang H, Yung MMH, Ngan HYS, Chan KKL, Chan DW. The Impact of the Tumor Microenvironment on Macrophage Polarization in Cancer Metastatic Progression. Int J Mol Sci 2021;22:6560. [PMID: 34207286 DOI: 10.3390/ijms22126560] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 10.5] [Reference Citation Analysis]
341 Fu H, Xu H, Chong K, Li M, Ang KS, Lee HK, Ling J, Chen A, Shao L, Liu L, Chen J. Unsupervised Spatially Embedded Deep Representation of Spatial Transcriptomics.. [DOI: 10.1101/2021.06.15.448542] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
342 Suresh M, Menne S. Application of the woodchuck animal model for the treatment of hepatitis B virus-induced liver cancer. World J Gastrointest Oncol 2021; 13(6): 509-535 [PMID: 34163570 DOI: 10.4251/wjgo.v13.i6.509] [Cited by in CrossRef: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
343 Huo J, Wu L, Zang Y. Construction and Validation of a Universal Applicable Prognostic Signature for Gastric Cancer Based on Seven Immune-Related Gene Correlated With Tumor Associated Macrophages. Front Oncol 2021;11:635324. [PMID: 34178625 DOI: 10.3389/fonc.2021.635324] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
344 Tan Y, Wang M, Zhang Y, Ge S, Zhong F, Xia G, Sun C. Tumor-Associated Macrophages: A Potential Target for Cancer Therapy. Front Oncol 2021;11:693517. [PMID: 34178692 DOI: 10.3389/fonc.2021.693517] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
345 Natua S, Dhamdhere SG, Mutnuru SA, Shukla S. Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. Wiley Interdiscip Rev RNA 2021;:e1676. [PMID: 34109748 DOI: 10.1002/wrna.1676] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
346 Kim T, Johnston J, Felipe FJC, Hamby S, Castillo-lluva S, Goodall AH, Velasco G, Ocana A, Muthana M, Kiss-toth E, The Cardiogenics Consortium. TRIB1 regulates tumour growth via controlling tumour-associated macrophage phenotypes and is associated with breast cancer survival and treatment response.. [DOI: 10.1101/2021.06.07.446596] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
347 Shen M, Kang Y. Stresses in the metastatic cascade: molecular mechanisms and therapeutic opportunities. Genes Dev 2020;34:1577-98. [PMID: 33262145 DOI: 10.1101/gad.343251.120] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
348 Mendes BB, Sousa DP, Conniot J, Conde J. Nanomedicine-based strategies to target and modulate the tumor microenvironment. Trends Cancer 2021;7:847-62. [PMID: 34090865 DOI: 10.1016/j.trecan.2021.05.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
349 Inagaki K, Kunisho S, Takigawa H, Yuge R, Oka S, Tanaka S, Shimamoto F, Chayama K, Kitadai Y. Role of tumor-associated macrophages at the invasive front in human colorectal cancer progression. Cancer Sci 2021;112:2692-704. [PMID: 33964093 DOI: 10.1111/cas.14940] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
350 Huang Q, Liu J, Wu S, Zhang X, Xiao Z, Liu Z, Du W. Spi-B Promotes the Recruitment of Tumor-Associated Macrophages via Enhancing CCL4 Expression in Lung Cancer. Front Oncol 2021;11:659131. [PMID: 34141615 DOI: 10.3389/fonc.2021.659131] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
351 Li C, Qi Y, Zhang Y, Chen Y, Feng J, Zhang X. Artificial Engineering of Immune Cells for Improved Immunotherapy. Adv NanoBio Res 2021;1:2000081. [DOI: 10.1002/anbr.202000081] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
352 Osmulski PA, Cunsolo A, Chen M, Qian Y, Lin CL, Hung CN, Mahalingam D, Kirma NB, Chen CL, Taverna JA, Liss MA, Thompson IM, Huang TH, Gaczynska ME. Contacts with Macrophages Promote an Aggressive Nanomechanical Phenotype of Circulating Tumor Cells in Prostate Cancer. Cancer Res 2021;81:4110-23. [PMID: 34045187 DOI: 10.1158/0008-5472.CAN-20-3595] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
353 Sinha N, Sinha S, Valero C, Schäffer AA, Aldape K, Litchfield K, Chan TA, Morris LGT, Ruppin E. Immune determinants of the association between tumor mutational burden and immunotherapy response across cancer types.. [DOI: 10.1101/2021.05.25.445197] [Reference Citation Analysis]
354 Gandhi S, Oshi M, Murthy V, Repasky EA, Takabe K. Enhanced Thermogenesis in Triple-Negative Breast Cancer Is Associated with Pro-Tumor Immune Microenvironment. Cancers (Basel) 2021;13:2559. [PMID: 34071012 DOI: 10.3390/cancers13112559] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
355 George A, Sahin I, Carneiro BA, Dizon DS, Safran HP, El-Deiry WS. Strategies to sensitize cancer cells to immunotherapy. Hum Vaccin Immunother 2021;:1-7. [PMID: 34019474 DOI: 10.1080/21645515.2021.1891817] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
356 Zhang Y, Chen Y, Li J, Zhu X, Liu Y, Wang X, Wang H, Yao Y, Gao Y, Chen Z. Development of Toll-like Receptor Agonist-Loaded Nanoparticles as Precision Immunotherapy for Reprogramming Tumor-Associated Macrophages. ACS Appl Mater Interfaces 2021;13:24442-52. [PMID: 34008947 DOI: 10.1021/acsami.1c01453] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
357 Zheng BW, Yang ML, Huang W, Zheng BY, Zhang TL, Li J, Lv GH, Yan YG, Zou MX. Prognostic Significance of Tumor-Associated Macrophages in Chondroblastoma and Their Association with Response to Adjuvant Radiotherapy. J Inflamm Res 2021;14:1991-2005. [PMID: 34040412 DOI: 10.2147/JIR.S308707] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
358 Zeng Z, Liu Y, Wen Q, Li Y, Yu J, Xu Q, Wan W, He Y, Ma C, Huang Y, Yang H, Jiang O, Li F. Experimental study on preparation and anti-tumor efficiency of nanoparticles targeting M2 macrophages. Drug Deliv 2021;28:943-56. [PMID: 33988472 DOI: 10.1080/10717544.2021.1921076] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
359 Huang C, Iovanna J, Santofimia-Castaño P. Targeting Fibrosis: The Bridge That Connects Pancreatitis and Pancreatic Cancer. Int J Mol Sci 2021;22:4970. [PMID: 34067040 DOI: 10.3390/ijms22094970] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
360 Şen Ö, Emanet M, Ciofani G. Nanotechnology-Based Strategies to Evaluate and Counteract Cancer Metastasis and Neoangiogenesis. Adv Healthc Mater 2021;10:e2002163. [PMID: 33763992 DOI: 10.1002/adhm.202002163] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
361 Lucero MY, East AK, Reinhardt CJ, Sedgwick AC, Su S, Lee MC, Chan J. Development of NIR-II Photoacoustic Probes Tailored for Deep-Tissue Sensing of Nitric Oxide. J Am Chem Soc 2021;143:7196-202. [PMID: 33905646 DOI: 10.1021/jacs.1c03004] [Cited by in Crossref: 48] [Cited by in F6Publishing: 54] [Article Influence: 24.0] [Reference Citation Analysis]
362 Colombo MV, Bersini S, Arrigoni C, Gilardi M, Sansoni V, Ragni E, Candiani G, Lombardi G, Moretti M. Engineering the early bone metastatic niche through human vascularized immuno bone minitissues. Biofabrication 2021;13. [PMID: 33735854 DOI: 10.1088/1758-5090/abefea] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
363 Neophytou CM, Panagi M, Stylianopoulos T, Papageorgis P. The Role of Tumor Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic Opportunities. Cancers (Basel) 2021;13:2053. [PMID: 33922795 DOI: 10.3390/cancers13092053] [Cited by in Crossref: 34] [Cited by in F6Publishing: 41] [Article Influence: 17.0] [Reference Citation Analysis]
364 Haupt S, Caramia F, Klein SL, Rubin JB, Haupt Y. Sex disparities matter in cancer development and therapy. Nat Rev Cancer 2021;21:393-407. [PMID: 33879867 DOI: 10.1038/s41568-021-00348-y] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 17.0] [Reference Citation Analysis]
365 Cendrowicz E, Sas Z, Bremer E, Rygiel TP. The Role of Macrophages in Cancer Development and Therapy. Cancers (Basel) 2021;13:1946. [PMID: 33919517 DOI: 10.3390/cancers13081946] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 18.0] [Reference Citation Analysis]
366 Parker CC, Lapi SE. Positron Emission Tomography Imaging of Macrophages in Cancer. Cancers (Basel) 2021;13:1921. [PMID: 33923410 DOI: 10.3390/cancers13081921] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
367 Li B, Qi ZP, He DL, Chen ZH, Liu JY, Wong MW, Zhang JW, Xu EP, Shi Q, Cai SL, Sun D, Yao LQ, Zhou PH, Zhong YS. NLRP7 deubiquitination by USP10 promotes tumor progression and tumor-associated macrophage polarization in colorectal cancer. J Exp Clin Cancer Res 2021;40:126. [PMID: 33838681 DOI: 10.1186/s13046-021-01920-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
368 Rihawi K, Ricci AD, Rizzo A, Brocchi S, Marasco G, Pastore LV, Llimpe FLR, Golfieri R, Renzulli M. Tumor-Associated Macrophages and Inflammatory Microenvironment in Gastric Cancer: Novel Translational Implications. Int J Mol Sci 2021;22:3805. [PMID: 33916915 DOI: 10.3390/ijms22083805] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 15.5] [Reference Citation Analysis]
369 Mukherjee A, Madamsetty VS, Mukherjee S. Emerging Trends in Immunomodulatory Nanomaterials Toward Cancer Therapy. Synthesis Lectures on Biomedical Engineering 2021;16:i-84. [DOI: 10.2200/s01083ed1v01y202103bme061] [Reference Citation Analysis]
370 Gupta B, Kim JO. Recent progress in cancer immunotherapy approaches based on nanoparticle delivery devices. J Pharm Investig 2021;51:399-412. [DOI: 10.1007/s40005-021-00527-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
371 Huang Q, Liang X, Ren T, Huang Y, Zhang H, Yu Y, Chen C, Wang W, Niu J, Lou J, Guo W. The role of tumor-associated macrophages in osteosarcoma progression - therapeutic implications. Cell Oncol (Dordr) 2021;44:525-39. [PMID: 33788151 DOI: 10.1007/s13402-021-00598-w] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 10.0] [Reference Citation Analysis]
372 Vetvicka V, Teplyakova TV, Shintyapina AB, Korolenko TA. Effects of Medicinal Fungi-Derived β-Glucan on Tumor Progression. J Fungi (Basel) 2021;7:250. [PMID: 33806255 DOI: 10.3390/jof7040250] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
373 Yang D, Yang L, Cai J, Hu X, Li H, Zhang X, Zhang X, Chen X, Dong H, Nie H, Li Y. A sweet spot for macrophages: Focusing on polarization. Pharmacol Res 2021;167:105576. [PMID: 33771700 DOI: 10.1016/j.phrs.2021.105576] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
374 Lee H, Na KJ, Choi H. Differences in Tumor Immune Microenvironment in Metastatic Sites of Breast Cancer. Front Oncol 2021;11:649004. [PMID: 33816302 DOI: 10.3389/fonc.2021.649004] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
375 Pepermans RA, Sharma G, Prossnitz ER. G Protein-Coupled Estrogen Receptor in Cancer and Stromal Cells: Functions and Novel Therapeutic Perspectives. Cells 2021;10:672. [PMID: 33802978 DOI: 10.3390/cells10030672] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
376 Kim SH, Kim SJ, Park J, Joe Y, Lee SE, Saeidi S, Zhong X, Kim SH, Park SA, Na HK, Chung HT, Surh YJ. Reprograming of Tumor-Associated Macrophages in Breast Tumor-Bearing Mice under Chemotherapy by Targeting Heme Oxygenase-1. Antioxidants (Basel) 2021;10:470. [PMID: 33809707 DOI: 10.3390/antiox10030470] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
377 Li Y, Hodge J, Liu Q, Wang J, Wang Y, Evans TD, Altomare D, Yao Y, Murphy EA, Razani B, Fan D. TFEB is a master regulator of tumor-associated macrophages in breast cancer. J Immunother Cancer 2020;8:e000543. [PMID: 32487570 DOI: 10.1136/jitc-2020-000543] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 14.0] [Reference Citation Analysis]
378 Zhou H, Lei PJ, Padera TP. Progression of Metastasis through Lymphatic System. Cells 2021;10:627. [PMID: 33808959 DOI: 10.3390/cells10030627] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
379 Chen S, Lai SWT, Brown CE, Feng M. Harnessing and Enhancing Macrophage Phagocytosis for Cancer Therapy. Front Immunol 2021;12:635173. [PMID: 33790906 DOI: 10.3389/fimmu.2021.635173] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
380 Liu J, Wang Y, Qiu Z, Lv G, Huang X, Lin H, Lin Z, Qu P. Impact of TCM on Tumor-Infiltrating Myeloid Precursors in the Tumor Microenvironment. Front Cell Dev Biol 2021;9:635122. [PMID: 33748122 DOI: 10.3389/fcell.2021.635122] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
381 Chhabra G, Singh CK, Amiri D, Akula N, Ahmad N. Recent Advancements on Immunomodulatory Mechanisms of Resveratrol in Tumor Microenvironment. Molecules 2021;26:1343. [PMID: 33802331 DOI: 10.3390/molecules26051343] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
382 Bhattacharya D, Sakhare K, Narayan KP, Banerjee R. The prospects of nanotherapeutic approaches for targeting tumor-associated macrophages in oral cancer. Nanomedicine 2021;34:102371. [PMID: 33662592 DOI: 10.1016/j.nano.2021.102371] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
383 Wu P, Gao W, Su M, Nice EC, Zhang W, Lin J, Xie N. Adaptive Mechanisms of Tumor Therapy Resistance Driven by Tumor Microenvironment. Front Cell Dev Biol 2021;9:641469. [PMID: 33732706 DOI: 10.3389/fcell.2021.641469] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 21.5] [Reference Citation Analysis]
384 Li X, Chen Z, Ni Y, Bian C, Huang J, Chen L, Xie X, Wang J. Tumor-associated macrophages secret exosomal miR-155 and miR-196a-5p to promote metastasis of non-small-cell lung cancer. Transl Lung Cancer Res 2021;10:1338-54. [PMID: 33889514 DOI: 10.21037/tlcr-20-1255] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 8.5] [Reference Citation Analysis]
385 Saeedifar AM, Mosayebi G, Ghazavi A, Bushehri RH, Ganji A. Macrophage polarization by phytotherapy in the tumor microenvironment. Phytotherapy Research 2021;35:3632-48. [DOI: 10.1002/ptr.7058] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
386 Xue C, Li G, Lu J, Luo J, Jia J. Novel insights for lncRNA MAGI2-AS3 in solid tumors. Biomed Pharmacother 2021;137:111429. [PMID: 33761624 DOI: 10.1016/j.biopha.2021.111429] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
387 Chang CM, Lam HYP, Hsu HJ, Jiang SJ. Interleukin-10: A double-edged sword in breast cancer. Tzu Chi Med J 2021;33:203-11. [PMID: 34386356 DOI: 10.4103/tcmj.tcmj_162_20] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
388 Zhao B, Hui X, Zeng H, Yin Y, Huang J, Tang Q, Ge G, Lei T. Sophoridine Inhibits the Tumour Growth of Non-Small Lung Cancer by Inducing Macrophages M1 Polarisation via MAPK-Mediated Inflammatory Pathway. Front Oncol 2021;11:634851. [PMID: 33718223 DOI: 10.3389/fonc.2021.634851] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
389 Raj S, Chandel V, Maurya S, Kumar D. Role of Macrophages in Solid Tumor Metabolism. Macrophages 2021. [DOI: 10.5772/intechopen.93182] [Reference Citation Analysis]
390 Vinaiphat A, Low JK, Yeoh KW, Chng WJ, Sze SK. Application of Advanced Mass Spectrometry-Based Proteomics to Study Hypoxia Driven Cancer Progression. Front Oncol 2021;11:559822. [PMID: 33708620 DOI: 10.3389/fonc.2021.559822] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
391 Ye T, Liu J, Zhao W, Gao S, Wang S, Wu F, Zhou H. The hypothesis of tumor-associated macrophages mediating semi-phagocytosis of cancer cells in distant metastasis. Future Oncol 2021;17:1125-9. [PMID: 33557616 DOI: 10.2217/fon-2020-1101] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
392 Neupane KR, McCorkle JR, Kopper TJ, Lakes JE, Aryal SP, Abdullah M, Snell AA, Gensel JC, Kolesar J, Richards CI. Macrophage-Engineered Vesicles for Therapeutic Delivery and Bidirectional Reprogramming of Immune Cell Polarization. ACS Omega 2021;6:3847-57. [PMID: 33585763 DOI: 10.1021/acsomega.0c05632] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
393 Li J, Lu Z, Zhang Y, Xia L, Su Z. Emerging roles of non-coding RNAs in the metabolic reprogramming of tumor-associated macrophages. Immunol Lett 2021;232:27-34. [PMID: 33577913 DOI: 10.1016/j.imlet.2021.02.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
394 Raschdorf A, Sünderhauf A, Skibbe K, Ghebrehiwet B, Peerschke EI, Sina C, Derer S. Heterozygous P32/C1QBP/HABP1 Polymorphism rs56014026 Reduces Mitochondrial Oxidative Phosphorylation and Is Expressed in Low-grade Colorectal Carcinomas. Front Oncol 2020;10:631592. [PMID: 33628739 DOI: 10.3389/fonc.2020.631592] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
395 Zhang DX, Vu LT, Ismail NN, Le MTN, Grimson A. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Semin Cancer Biol 2021:S1044-579X(21)00013-4. [PMID: 33545339 DOI: 10.1016/j.semcancer.2021.01.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
396 Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021;12:230-50. [PMID: 33613850 DOI: 10.18632/oncotarget.27870] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
397 Blanco-Fernandez B, Gaspar VM, Engel E, Mano JF. Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. Adv Sci (Weinh) 2021;8:2003129. [PMID: 33643799 DOI: 10.1002/advs.202003129] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
398 Aggarwal V, Montoya CA, Donnenberg VS, Sant S. Interplay between tumor microenvironment and partial EMT as the driver of tumor progression. iScience 2021;24:102113. [PMID: 33659878 DOI: 10.1016/j.isci.2021.102113] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 12.5] [Reference Citation Analysis]
399 Wei X, Shi Y, Dai Z, Wang P, Meng X, Yin B. Underlying metastasis mechanism and clinical application of exosomal circular RNA in tumors (Review). Int J Oncol 2021;58:289-97. [PMID: 33650643 DOI: 10.3892/ijo.2021.5179] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
400 Li C, Xu X, Wei S, Jiang P, Xue L, Wang J; Senior Correspondence. Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer. J Immunother Cancer 2021;9:e001341. [PMID: 33504575 DOI: 10.1136/jitc-2020-001341] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 13.0] [Reference Citation Analysis]
401 Mintz J, Vedenko A, Rosete O, Shah K, Goldstein G, Hare JM, Ramasamy R, Arora H. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines (Basel) 2021;9:94. [PMID: 33513777 DOI: 10.3390/vaccines9020094] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 14.5] [Reference Citation Analysis]
402 Todorović-Raković N. The role of cytokines in the evolution of cancer: IFN-γ paradigm. Cytokine 2021;:155442. [PMID: 33509640 DOI: 10.1016/j.cyto.2021.155442] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
403 Kwon Y. Possible Beneficial Effects of N-Acetylcysteine for Treatment of Triple-Negative Breast Cancer. Antioxidants (Basel) 2021;10:169. [PMID: 33498875 DOI: 10.3390/antiox10020169] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
404 Angioni R, Sánchez-Rodríguez R, Viola A, Molon B. TGF-β in Cancer: Metabolic Driver of the Tolerogenic Crosstalk in the Tumor Microenvironment. Cancers (Basel) 2021;13:401. [PMID: 33499083 DOI: 10.3390/cancers13030401] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
405 Coronado E, Yañez Y, Vidal E, Rubio L, Vera-Sempere F, Cañada-Martínez AJ, Panadero J, Cañete A, Ladenstein R, Castel V, Font de Mora J. Intratumoral immunosuppression profiles in 11q-deleted neuroblastomas provide new potential therapeutic targets. Mol Oncol 2021;15:364-80. [PMID: 33252831 DOI: 10.1002/1878-0261.12868] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
406 Cao J, Zhang C, Jiang GQ, Jin SJ, Wang Q, Wang AQ, Bai DS. Identification of hepatocellular carcinoma-related genes associated with macrophage differentiation based on bioinformatics analyses. Bioengineered 2021;12:296-309. [PMID: 33380242 DOI: 10.1080/21655979.2020.1868119] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
407 Bansal D, Reimers MA, Knoche EM, Pachynski RK. Immunotherapy and Immunotherapy Combinations in Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2021;13:334. [PMID: 33477569 DOI: 10.3390/cancers13020334] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
408 Teo AYT, Xiang X, Le MT, Wong AL, Zeng Q, Wang L, Goh BC. Tiny miRNAs Play a Big Role in the Treatment of Breast Cancer Metastasis. Cancers (Basel) 2021;13:337. [PMID: 33477629 DOI: 10.3390/cancers13020337] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
409 Lee HY, Son SW, Moeng S, Choi SY, Park JK. The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer. Int J Mol Sci 2021;22:E627. [PMID: 33435156 DOI: 10.3390/ijms22020627] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
410 Haist M, Stege H, Grabbe S, Bros M. The Functional Crosstalk between Myeloid-Derived Suppressor Cells and Regulatory T Cells within the Immunosuppressive Tumor Microenvironment. Cancers (Basel) 2021;13:E210. [PMID: 33430105 DOI: 10.3390/cancers13020210] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 17.5] [Reference Citation Analysis]
411 Li J, Hu C, Du Y, Tang X, Shao C, Xu T, Zhao Z, Hu H, Sheng Y, Guo J, Xi Y. Identification of Iron Metabolism-Related Gene Signatures for Predicting the Prognosis of Patients With Sarcomas. Front Oncol 2020;10:599816. [PMID: 33489900 DOI: 10.3389/fonc.2020.599816] [Reference Citation Analysis]
412 Xu M, Dong XP. Endolysosomal TRPMLs in Cancer. Biomolecules 2021;11:65. [PMID: 33419007 DOI: 10.3390/biom11010065] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
413 Bhat AA, Nisar S, Maacha S, Carneiro-Lobo TC, Akhtar S, Siveen KS, Wani NA, Rizwan A, Bagga P, Singh M, Reddy R, Uddin S, Grivel JC, Chand G, Frenneaux MP, Siddiqi MA, Bedognetti D, El-Rifai W, Macha MA, Haris M. Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol Cancer 2021;20:2. [PMID: 33390169 DOI: 10.1186/s12943-020-01294-3] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 16.0] [Reference Citation Analysis]
414 Zhang J, Song D, Dong Y, Bai L, Gao D, Guo Y, Li F, Yu X, Zhang S. Study on the Changes of Immune Factors in Different Stages of Non-Small Cell Lung Cancer Chemotherapy. ALC 2021;10:57-64. [DOI: 10.4236/alc.2021.104006] [Reference Citation Analysis]
415 Mohammadi Sepahvand E, Masoudnia M, Sadat Hosseininia H, Kazempour A, Bostanshirin N, Jalili A, Ebrahimi Sadrabadi A, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Department of Cellular and Molecular Biology, Faculty of Advanced Medical Science, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran, Department of Microbiology, Faculty of Science, Lahijan Branch, Islamic Azad University, Lahijan, Iran, Department of Microbiology, School of Medicine Science, Alborz University of Medical Science, Alborz, Iran, Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran.. Representing Tumor-Associated Macrophages as the Angiogenesis and Tumor Microenvironment Regulator. Mod Med Lab J 2021;4:52-67. [DOI: 10.30699/mmlj17.4.1.52] [Reference Citation Analysis]
416 Mukherjee A, Madamsetty VS, Mukherjee S. Immune Response and Its Role in Cancer. Emerging Trends in Immunomodulatory Nanomaterials Toward Cancer Therapy 2021. [DOI: 10.1007/978-3-031-01669-1_2] [Reference Citation Analysis]
417 Holen I, Quayle L. Stem cell niches in bone and their roles in cancer metastasis. The Cancer Stem Cell Niche 2021. [DOI: 10.1016/bs.asn.2020.09.002] [Reference Citation Analysis]
418 Zhu S, Luo Z, Li X, Han X, Shi S, Zhang T. Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. J Cancer 2021;12:54-64. [PMID: 33391402 DOI: 10.7150/jca.49692] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
419 Yue Z, Nie L, Zhang P, Chen Q, Lv Q, Wang Q. Tissue-resident macrophage inflammaging aggravates homeostasis dysregulation in age-related diseases. Cell Immunol 2021;361:104278. [PMID: 33445052 DOI: 10.1016/j.cellimm.2020.104278] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
420 Hersh J, Broyles D, Capcha JMC, Dikici E, Shehadeh LA, Daunert S, Deo S. Peptide-Modified Biopolymers for Biomedical Applications. ACS Appl Bio Mater 2021;4:229-51. [PMID: 34250454 DOI: 10.1021/acsabm.0c01145] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
421 Hayes C, Donohoe CL, Davern M, Donlon NE. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett 2021;500:75-86. [PMID: 33347908 DOI: 10.1016/j.canlet.2020.12.021] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
422 Boyle ST, Johan MZ, Samuel MS. Tumour-directed microenvironment remodelling at a glance. J Cell Sci 2020;133:jcs247783. [PMID: 33443095 DOI: 10.1242/jcs.247783] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
423 Attri A, Thakur D, Kaur T, Sensale S, Peng Z, Kumar D, Singh RP. Nanoparticles Incorporating a Fluorescence Turn-on Reporter for Real-Time Drug Release Monitoring, a Chemoenhancer and a Stealth Agent: Poseidon's Trident against Cancer? Mol Pharm 2021;18:124-47. [PMID: 33346663 DOI: 10.1021/acs.molpharmaceut.0c00730] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
424 Chen M, Singh AK, Repasky EA. Highlighting the Potential for Chronic Stress to Minimize Therapeutic Responses to Radiotherapy through Increased Immunosuppression and Radiation Resistance. Cancers (Basel) 2020;12:E3853. [PMID: 33419318 DOI: 10.3390/cancers12123853] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
425 Lachowicz D, Kaczyńska A, Bodzon-Kulakowska A, Karewicz A, Wirecka R, Szuwarzyński M, Zapotoczny S. Coacervate Thermoresponsive Polysaccharide Nanoparticles as Delivery System for Piroxicam. Int J Mol Sci 2020;21:E9664. [PMID: 33352956 DOI: 10.3390/ijms21249664] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
426 Guo N, Zhou Y, Wang T, Lin M, Chen J, Zhang Z, Zhong X, Lu Y, Yang Q, Xu D, Gao J, Han M. Specifically Eliminating Tumor-Associated Macrophages with an Extra- and Intracellular Stepwise-Responsive Nanocarrier for Inhibiting Metastasis. ACS Appl Mater Interfaces 2020;12:57798-809. [PMID: 33325679 DOI: 10.1021/acsami.0c19301] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
427 Chen Z, Huang H, Wang Y, Zhan F, Quan Z. Identification of Immune-Related Genes MSR1 and TLR7 in Relation to Macrophage and Type-2 T-Helper Cells in Osteosarcoma Tumor Micro-Environments as Anti-metastasis Signatures. Front Mol Biosci 2020;7:576298. [PMID: 33381518 DOI: 10.3389/fmolb.2020.576298] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
428 Esteves M, Monteiro MP, Duarte JA. Role of Regular Physical Exercise in Tumor Vasculature: Favorable Modulator of Tumor Milieu. Int J Sports Med 2021;42:389-406. [PMID: 33307553 DOI: 10.1055/a-1308-3476] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
429 Pinto B, Henriques AC, Silva PMA, Bousbaa H. Three-Dimensional Spheroids as In Vitro Preclinical Models for Cancer Research. Pharmaceutics. 2020;12. [PMID: 33291351 DOI: 10.3390/pharmaceutics12121186] [Cited by in Crossref: 65] [Cited by in F6Publishing: 71] [Article Influence: 21.7] [Reference Citation Analysis]
430 Liaw K, Sharma R, Sharma A, Salazar S, Appiani La Rosa S, Kannan RM. Systemic dendrimer delivery of triptolide to tumor-associated macrophages improves anti-tumor efficacy and reduces systemic toxicity in glioblastoma. J Control Release 2021;329:434-44. [PMID: 33290796 DOI: 10.1016/j.jconrel.2020.12.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
431 Villalobos-Ayala K, Ortiz Rivera I, Alvarez C, Husain K, DeLoach D, Krystal G, Hibbs ML, Jiang K, Ghansah T. Apigenin Increases SHIP-1 Expression, Promotes Tumoricidal Macrophages and Anti-Tumor Immune Responses in Murine Pancreatic Cancer. Cancers (Basel) 2020;12:E3631. [PMID: 33291556 DOI: 10.3390/cancers12123631] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
432 Yu Y, Wang L, Cao S, Gao S, Wang W, Mulvihill L, Machtay M, Fu P, Yu J, Kong FS. Pre-radiotherapy lymphocyte count and platelet-to-lymphocyte ratio may improve survival prediction beyond clinical factors in limited stage small cell lung cancer: model development and validation. Transl Lung Cancer Res 2020;9:2315-27. [PMID: 33489795 DOI: 10.21037/tlcr-20-666] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
433 Arianfar E, Shahgordi S, Memarian A. Natural Killer Cell Defects in Breast Cancer: A Key Pathway for Tumor Evasion. Int Rev Immunol 2021;40:197-216. [PMID: 33258393 DOI: 10.1080/08830185.2020.1845670] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
434 Jamieson TR, Poutou J, Ilkow CS. Redirecting oncolytic viruses: Engineering opportunists to take control of the tumour microenvironment. Cytokine & Growth Factor Reviews 2020;56:102-14. [DOI: 10.1016/j.cytogfr.2020.07.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
435 Yang L, Li T, Shi H, Zhou Z, Huang Z, Lei X. The cellular and molecular components involved in pre-metastatic niche formation in colorectal cancer liver metastasis. Expert Review of Gastroenterology & Hepatology 2021;15:389-99. [DOI: 10.1080/17474124.2021.1848543] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
436 Grauers Wiktorin H, Aydin E, Hellstrand K, Martner A. NOX2-Derived Reactive Oxygen Species in Cancer. Oxid Med Cell Longev 2020;2020:7095902. [PMID: 33312338 DOI: 10.1155/2020/7095902] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
437 Domagala J, Lachota M, Klopotowska M, Graczyk-Jarzynka A, Domagala A, Zhylko A, Soroczynska K, Winiarska M. The Tumor Microenvironment-A Metabolic Obstacle to NK Cells' Activity. Cancers (Basel) 2020;12:E3542. [PMID: 33260925 DOI: 10.3390/cancers12123542] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
438 Attalla S, Taifour T, Bui T, Muller W. Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo. Oncogene 2021;40:475-91. [PMID: 33235291 DOI: 10.1038/s41388-020-01560-0] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
439 Jeong JH, Ojha U, Lee YM. Pathological angiogenesis and inflammation in tissues. Arch Pharm Res 2021;44:1-15. [PMID: 33230600 DOI: 10.1007/s12272-020-01287-2] [Cited by in Crossref: 21] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
440 Qi L, Chen J, Yang Y, Hu W. Hypoxia Correlates With Poor Survival and M2 Macrophage Infiltration in Colorectal Cancer. Front Oncol 2020;10:566430. [PMID: 33330037 DOI: 10.3389/fonc.2020.566430] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
441 Hart PC, Rajab IM, Alebraheem M, Potempa LA. C-Reactive Protein and Cancer-Diagnostic and Therapeutic Insights. Front Immunol 2020;11:595835. [PMID: 33324413 DOI: 10.3389/fimmu.2020.595835] [Cited by in Crossref: 34] [Cited by in F6Publishing: 37] [Article Influence: 11.3] [Reference Citation Analysis]
442 Wei R, Zhu WW, Yu GY, Wang X, Gao C, Zhou X, Lin ZF, Shao WQ, Wang SH, Lu M, Qin LX. S100 calcium-binding protein A9 from tumor-associated macrophage enhances cancer stem cell-like properties of hepatocellular carcinoma. Int J Cancer 2021;148:1233-44. [PMID: 33205453 DOI: 10.1002/ijc.33371] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
443 Ceci C, Atzori MG, Lacal PM, Graziani G. Targeting Tumor-Associated Macrophages to Increase the Efficacy of Immune Checkpoint Inhibitors: A Glimpse into Novel Therapeutic Approaches for Metastatic Melanoma. Cancers (Basel) 2020;12:E3401. [PMID: 33212945 DOI: 10.3390/cancers12113401] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 8.7] [Reference Citation Analysis]
444 Chen Y, Jin H, Song Y, Huang T, Cao J, Tang Q, Zou Z. Targeting tumor-associated macrophages: A potential treatment for solid tumors. J Cell Physiol 2021;236:3445-65. [PMID: 33200401 DOI: 10.1002/jcp.30139] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
445 Deng R, Lu J, Liu X, Peng XH, Wang J, Li XP. PD-L1 Expression is Highly Associated with Tumor-Associated Macrophage Infiltration in Nasopharyngeal Carcinoma. Cancer Manag Res 2020;12:11585-96. [PMID: 33209062 DOI: 10.2147/CMAR.S274913] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
446 Wu MF, Lin CA, Yuan TH, Yeh HY, Su SF, Guo CL, Chang GC, Li KC, Ho CC, Chen HW. The M1/M2 spectrum and plasticity of malignant pleural effusion-macrophage in advanced lung cancer. Cancer Immunol Immunother 2021;70:1435-50. [PMID: 33175182 DOI: 10.1007/s00262-020-02781-8] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
447 Peng H, Wang JH, Guo F, Zhu FF, Wen ZJ, Zhong HJ, Liang DS. Legumain protease-activated tuftsin-functionalized nanoparticles for dual-targeting TAMs and cancer chemotherapy. Colloids Surf B Biointerfaces 2021;197:111442. [PMID: 33166937 DOI: 10.1016/j.colsurfb.2020.111442] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
448 Sharma A, Liaw K, Sharma R, Spriggs T, Appiani La Rosa S, Kannan S, Kannan RM. Dendrimer-Mediated Targeted Delivery of Rapamycin to Tumor-Associated Macrophages Improves Systemic Treatment of Glioblastoma. Biomacromolecules 2020;21:5148-61. [PMID: 33112134 DOI: 10.1021/acs.biomac.0c01270] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
449 Meškytė EM, Keskas S, Ciribilli Y. MYC as a Multifaceted Regulator of Tumor Microenvironment Leading to Metastasis. Int J Mol Sci 2020;21:E7710. [PMID: 33081056 DOI: 10.3390/ijms21207710] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 6.7] [Reference Citation Analysis]
450 Han S, Zhen W, Guo T, Zou J, Li F. SETDB1 promotes glioblastoma growth via CSF-1-dependent macrophage recruitment by activating the AKT/mTOR signaling pathway. J Exp Clin Cancer Res 2020;39:218. [PMID: 33059737 DOI: 10.1186/s13046-020-01730-8] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
451 Mejia I, Bodapati S, Chen KT, Díaz B. Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials. Biomedicines 2020;8:E401. [PMID: 33050151 DOI: 10.3390/biomedicines8100401] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
452 Zheng P, Li W. Crosstalk Between Mesenchymal Stromal Cells and Tumor-Associated Macrophages in Gastric Cancer. Front Oncol 2020;10:571516. [PMID: 33163402 DOI: 10.3389/fonc.2020.571516] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
453 Gómez V, Eykyn TR, Mustapha R, Flores-borja F, Male V, Barber PR, Patsialou A, Green R, Panagaki F, Li CW, Fruhwirth GO, Ros S, Brindle KM, Ng T. Breast cancer–associated macrophages promote tumorigenesis by suppressing succinate dehydrogenase in tumor cells. Sci Signal 2020;13:eaax4585. [DOI: 10.1126/scisignal.aax4585] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
454 Hoover AR, Liu K, Devette CI, Krawic JR, West CL, Medcalf D, Welm AL, Sun X, Hildebrand WH, Chen WR. ScRNA-seq reveals tumor microenvironment remodeling induced by local intervention-based immunotherapy.. [DOI: 10.1101/2020.10.02.323006] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
455 Trac N, Chen LY, Zhang A, Liao CP, Poon C, Wang J, Ando Y, Joo J, Garri C, Shen K, Kani K, Gross ME, Chung EJ. CCR2-targeted micelles for anti-cancer peptide delivery and immune stimulation. J Control Release 2021;329:614-23. [PMID: 33011241 DOI: 10.1016/j.jconrel.2020.09.054] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
456 Allen R, Ivtchenko E, Thuamsang B, Sangsuwan R, Lewis JS. Polymer-loaded hydrogels serve as depots for lactate and mimic "cold" tumor microenvironments. Biomater Sci 2020;8:6056-68. [PMID: 33000781 DOI: 10.1039/d0bm01196g] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
457 Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering Macrophages for Cancer Immunotherapy and Drug Delivery. Adv Mater 2020;32:e2002054. [PMID: 32856350 DOI: 10.1002/adma.202002054] [Cited by in Crossref: 176] [Cited by in F6Publishing: 194] [Article Influence: 58.7] [Reference Citation Analysis]
458 Thomas MU, Messex JK, Dang T, Abdulkadir SA, Jorcyk CL, Liou GY. Macrophages expedite cell proliferation of prostate intraepithelial neoplasia through their downstream target ERK. FEBS J 2021;288:1871-86. [PMID: 32865335 DOI: 10.1111/febs.15541] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
459 Gwak J, Jeong H, Lee K, Shin JY, Sim T, Na J, Kim J, Ju BG. SFMBT2-Mediated Infiltration of Preadipocytes and TAMs in Prostate Cancer. Cancers (Basel) 2020;12:E2718. [PMID: 32971847 DOI: 10.3390/cancers12092718] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
460 Kolb D, Kolishetti N, Surnar B, Sarkar S, Guin S, Shah AS, Dhar S. Metabolic Modulation of the Tumor Microenvironment Leads to Multiple Checkpoint Inhibition and Immune Cell Infiltration. ACS Nano 2020;14:11055-66. [PMID: 32706241 DOI: 10.1021/acsnano.9b10037] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 10.7] [Reference Citation Analysis]
461 Xu T, Xu X, Yang L, Chen X, Ju S. Noninvasive Visualization of Obesity-Boosted Inflammation in Orthotopic Pancreatic Ductal Adenocarcinoma Using an Octapod Iron Oxide Nanoparticle. ACS Appl Bio Mater 2020;3:6408-18. [PMID: 35021772 DOI: 10.1021/acsabm.0c00841] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
462 Xu J, Shen L, Bai C, Wang W, Li J, Yu X, Li Z, Li E, Yuan X, Chi Y, Yin Y, Lou W, Xu N, Bai Y, Zhang T, Xiu D, Wang X, Yuan Y, Chen J, Qin S, Jia R, Lu M, Cheng Y, Zhou Z, Li J, He J, Su W. Surufatinib in advanced pancreatic neuroendocrine tumours (SANET-p): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 2020;21:1489-99. [PMID: 32966810 DOI: 10.1016/S1470-2045(20)30493-9] [Cited by in Crossref: 56] [Cited by in F6Publishing: 56] [Article Influence: 18.7] [Reference Citation Analysis]
463 Kavvadas E. Autoantibodies specific for C1q, C3b, β2-glycoprotein 1 and annexins may amplify complement activity and reduce apoptosis-mediated immune suppression. Med Hypotheses 2020;144:110286. [PMID: 33254588 DOI: 10.1016/j.mehy.2020.110286] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
464 George CN, Canuas-Landero V, Theodoulou E, Muthana M, Wilson C, Ottewell P. Oestrogen and zoledronic acid driven changes to the bone and immune environments: Potential mechanisms underlying the differential anti-tumour effects of zoledronic acid in pre- and post-menopausal conditions. J Bone Oncol 2020;25:100317. [PMID: 32995253 DOI: 10.1016/j.jbo.2020.100317] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
465 Bi Y, Shirure VS, Liu R, Cunningham C, Ding L, Meacham JM, Goedegebuure SP, George SC, Fields RC. Tumor-on-a-chip platform to interrogate the role of macrophages in tumor progression. Integr Biol (Camb) 2020;12:221-32. [PMID: 32930334 DOI: 10.1093/intbio/zyaa017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
466 Wang Z, Zhao Y, Xu H, Liang F, Zou Q, Wang C, Jiang J, Lin F. CtBP1 promotes tumour-associated macrophage infiltration and progression in non-small-cell lung cancer. J Cell Mol Med 2020;24:11445-56. [PMID: 32910558 DOI: 10.1111/jcmm.15751] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
467 Singh SK, Sinha S, Padhan J, Jangde N, Ray R, Rai V. MYH9 suppresses melanoma tumorigenesis, metastasis and regulates tumor microenvironment. Med Oncol 2020;37:88. [PMID: 32902730 DOI: 10.1007/s12032-020-01413-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
468 Menga A, Serra M, Todisco S, Riera-Domingo C, Ammarah U, Ehling M, Palmieri EM, Di Noia MA, Gissi R, Favia M, Pierri CL, Porporato PE, Castegna A, Mazzone M. Glufosinate constrains synchronous and metachronous metastasis by promoting anti-tumor macrophages. EMBO Mol Med 2020;12:e11210. [PMID: 32885605 DOI: 10.15252/emmm.201911210] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
469 Shofolawe-Bakare OT, Stokes LD, Hossain M, Smith AE, Werfel TA. Immunostimulatory biomaterials to boost tumor immunogenicity. Biomater Sci 2020;8:5516-37. [PMID: 33049007 DOI: 10.1039/d0bm01183e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
470 Izquierdo-Torres E, Hernández-Oliveras A, Fuentes-García G, Zarain-Herzberg Á. Calcium signaling and epigenetics: A key point to understand carcinogenesis. Cell Calcium 2020;91:102285. [PMID: 32942140 DOI: 10.1016/j.ceca.2020.102285] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
471 Zhukova OV, Kovaleva TF, Arkhipova EV, Ryabov SA, Mukhina IV. Tumor-associated macrophages: Role in the pathological process of tumorigenesis and prospective therapeutic use (Review). Biomed Rep 2020;13:47. [PMID: 32934819 DOI: 10.3892/br.2020.1354] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
472 Asare PF, Roscioli E, Hurtado PR, Tran HB, Mah CY, Hodge S. LC3-Associated Phagocytosis (LAP): A Potentially Influential Mediator of Efferocytosis-Related Tumor Progression and Aggressiveness. Front Oncol 2020;10:1298. [PMID: 32850405 DOI: 10.3389/fonc.2020.01298] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
473 Puthenveetil A, Dubey S. Metabolic reprograming of tumor-associated macrophages. Ann Transl Med 2020;8:1030. [PMID: 32953830 DOI: 10.21037/atm-20-2037] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 8.7] [Reference Citation Analysis]
474 Yang C, Shi S, Su Y, Tong JS, Li L. P2X7R promotes angiogenesis and tumour-associated macrophage recruitment by regulating the NF-κB signalling pathway in colorectal cancer cells. J Cell Mol Med 2020;24:10830-41. [PMID: 32735377 DOI: 10.1111/jcmm.15708] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
475 Muciño-Olmos EA, Vázquez-Jiménez A, Avila-Ponce de León U, Matadamas-Guzman M, Maldonado V, López-Santaella T, Hernández-Hernández A, Resendis-Antonio O. Unveiling functional heterogeneity in breast cancer multicellular tumor spheroids through single-cell RNA-seq. Sci Rep 2020;10:12728. [PMID: 32728097 DOI: 10.1038/s41598-020-69026-7] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
476 Liu T, Zhang M, Sun D. Immune Cell Infiltration and Identifying Genes of Prognostic Value in the Papillary Renal Cell Carcinoma Microenvironment by Bioinformatics Analysis. Biomed Res Int 2020;2020:5019746. [PMID: 32775427 DOI: 10.1155/2020/5019746] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
477 Wan Z, Dong Y, Wei M, Gao X, Yang G, Zhang J, Liu L. Exosomes in Tumor Immunotherapy: Mediator, Drug Carrier, and Prognostic Biomarker. Adv Biosys 2020;4:2000061. [DOI: 10.1002/adbi.202000061] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
478 Casasanta MA, Yoo CC, Udayasuryan B, Sanders BE, Umaña A, Zhang Y, Peng H, Duncan AJ, Wang Y, Li L, Verbridge SS, Slade DJ. Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Sci Signal 2020;13:eaba9157. [PMID: 32694172 DOI: 10.1126/scisignal.aba9157] [Cited by in Crossref: 71] [Cited by in F6Publishing: 78] [Article Influence: 23.7] [Reference Citation Analysis]
479 de Carvalho JTG, Da Silva Baldivia D, de Castro DTH, Dos Santos HF, Dos Santos CM, Oliveira AS, Alfredo TM, Vilharva KN, de Picoli Souza K, Dos Santos EL. The immunoregulatory function of polyphenols: implications in cancer immunity. J Nutr Biochem 2020;85:108428. [PMID: 32679443 DOI: 10.1016/j.jnutbio.2020.108428] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
480 Zhou Y, Han M, Gao J. Prognosis and targeting of pre-metastatic niche. J Control Release 2020;325:223-34. [PMID: 32629136 DOI: 10.1016/j.jconrel.2020.06.037] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]
481 Dandia H, Tayalia P. Immunomodulation via macrophages to fight solid tumor malignancies. FEBS J 2021;288:799-802. [PMID: 32578301 DOI: 10.1111/febs.15437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
482 Erin N, Grahovac J, Brozovic A, Efferth T. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat 2020;53:100715. [PMID: 32679188 DOI: 10.1016/j.drup.2020.100715] [Cited by in Crossref: 116] [Cited by in F6Publishing: 131] [Article Influence: 38.7] [Reference Citation Analysis]
483 Katsuta E, Rashid OM, Takabe K. Clinical relevance of tumor microenvironment: immune cells, vessels, and mouse models. Hum Cell 2020;33:930-7. [PMID: 32507979 DOI: 10.1007/s13577-020-00380-4] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
484 Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 2020;13:64. [PMID: 32493414 DOI: 10.1186/s13045-020-00904-3] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 20.7] [Reference Citation Analysis]
485 Varga Z, Molnár T, Mázló A, Kovács R, Jenei V, Kerekes K, Bácsi A, Koncz G. Differences in the sensitivity of classically and alternatively activated macrophages to TAK1 inhibitor-induced necroptosis. Cancer Immunol Immunother 2020;69:2193-207. [PMID: 32472370 DOI: 10.1007/s00262-020-02623-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
486 Bi Y, Shirure VS, Liu R, Cunningham C, Ding L, Meacham JM, Goedegebuure SP, George SC, Fields RC. Tumor-on-a-chip platform to interrogate the role of macrophages in tumor progression.. [DOI: 10.1101/2020.05.27.119636] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
487 Zubair H, Khan MA, Anand S, Srivastava SK, Singh S, Singh AP. Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Semin Cancer Biol 2020:S1044-579X(20)30105-X. [PMID: 32470379 DOI: 10.1016/j.semcancer.2020.05.009] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
488 Lopez-Yrigoyen M, Cassetta L, Pollard JW. Macrophage targeting in cancer. Ann N Y Acad Sci 2021;1499:18-41. [PMID: 32445205 DOI: 10.1111/nyas.14377] [Cited by in Crossref: 47] [Cited by in F6Publishing: 61] [Article Influence: 15.7] [Reference Citation Analysis]
489 Hassan G, Seno M. Blood and Cancer: Cancer Stem Cells as Origin of Hematopoietic Cells in Solid Tumor Microenvironments. Cells 2020;9:E1293. [PMID: 32455995 DOI: 10.3390/cells9051293] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
490 Hoffmann EJ, Ponik SM. Biomechanical Contributions to Macrophage Activation in the Tumor Microenvironment. Front Oncol 2020;10:787. [PMID: 32509583 DOI: 10.3389/fonc.2020.00787] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
491 Dantas PHDS, Matos AO, da Silva Filho E, Silva-Sales M, Sales-Campos H. Triggering receptor expressed on myeloid cells-1 (TREM-1) as a therapeutic target in infectious and noninfectious disease: a critical review. Int Rev Immunol 2020;39:188-202. [PMID: 32379561 DOI: 10.1080/08830185.2020.1762597] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
492 Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY, Mou XZ. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol 2020;353:104119. [PMID: 32446032 DOI: 10.1016/j.cellimm.2020.104119] [Cited by in Crossref: 90] [Cited by in F6Publishing: 100] [Article Influence: 30.0] [Reference Citation Analysis]
493 Liu LY, Ma XZ, Ouyang B, Ings DP, Marwah S, Liu J, Chen AY, Gupta R, Manuel J, Chen XC, Gage BK, Cirlan I, Khuu N, Chung S, Camat D, Cheng M, Sekhon M, Zagorovsky K, Abdou Mohamed MA, Thoeni C, Atif J, Echeverri J, Kollmann D, Fischer S, Bader GD, Chan WCW, Michalak TI, McGilvray ID, MacParland SA. Nanoparticle Uptake in a Spontaneous and Immunocompetent Woodchuck Liver Cancer Model. ACS Nano 2020;14:4698-715. [PMID: 32255624 DOI: 10.1021/acsnano.0c00468] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
494 Malla RR, Deepak K, Merchant N, Dasari VR. Breast Tumor Microenvironment: Emerging target of therapeutic phytochemicals. Phytomedicine 2020;70:153227. [PMID: 32339885 DOI: 10.1016/j.phymed.2020.153227] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
495 Liaw K, Zhang F, Mangraviti A, Kannan S, Tyler B, Kannan RM. Dendrimer size effects on the selective brain tumor targeting in orthotopic tumor models upon systemic administration. Bioeng Transl Med 2020;5:e10160. [PMID: 32440565 DOI: 10.1002/btm2.10160] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
496 Chen M, Qiao G, Hylander BL, Mohammadpour H, Wang XY, Subjeck JR, Singh AK, Repasky EA. Adrenergic stress constrains the development of anti-tumor immunity and abscopal responses following local radiation. Nat Commun 2020;11:1821. [PMID: 32286326 DOI: 10.1038/s41467-020-15676-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
497 Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020;18:59. [PMID: 32264958 DOI: 10.1186/s12964-020-0530-4] [Cited by in Crossref: 354] [Cited by in F6Publishing: 394] [Article Influence: 118.0] [Reference Citation Analysis]
498 Osman A, Afify SM, Hassan G, Fu X, Seno A, Seno M. Revisiting Cancer Stem Cells as the Origin of Cancer-Associated Cells in the Tumor Microenvironment: A Hypothetical View from the Potential of iPSCs. Cancers (Basel) 2020;12:E879. [PMID: 32260363 DOI: 10.3390/cancers12040879] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
499 Dianat-Moghadam H, Azizi M, Eslami-S Z, Cortés-Hernández LE, Heidarifard M, Nouri M, Alix-Panabières C. The Role of Circulating Tumor Cells in the Metastatic Cascade: Biology, Technical Challenges, and Clinical Relevance. Cancers (Basel) 2020;12:E867. [PMID: 32260071 DOI: 10.3390/cancers12040867] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
500 Zhao X, Wang X, You Y, Wen D, Feng Z, Zhou Y, Que K, Gong J, Liu Z. Nogo-B fosters HCC progression by enhancing Yap/Taz-mediated tumor-associated macrophages M2 polarization. Exp Cell Res 2020;391:111979. [PMID: 32246992 DOI: 10.1016/j.yexcr.2020.111979] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
501 Yi M, Xu L, Jiao Y, Luo S, Li A, Wu K. The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol 2020;13:25. [PMID: 32222150 DOI: 10.1186/s13045-020-00848-8] [Cited by in Crossref: 91] [Cited by in F6Publishing: 83] [Article Influence: 30.3] [Reference Citation Analysis]
502 Wang Y, Lu J, Jiang B, Guo J. The roles of curcumin in regulating the tumor immunosuppressive microenvironment. Oncol Lett 2020;19:3059-70. [PMID: 32256807 DOI: 10.3892/ol.2020.11437] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
503 Polidoro MA, Milana F, Soldani C, Franceschini B, Anselmo A, Colombo FS, Di Tommaso L, Cimino M, Carnevale S, Lleo A, Jaillon S, Torzilli G, Donadon M. Impact of RAS mutations on the immune infiltrate of colorectal liver metastases: A preliminary study. J Leukoc Biol 2020;108:715-21. [PMID: 32108374 DOI: 10.1002/JLB.5AB0220-608R] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
504 Bednarczyk M, Stege H, Grabbe S, Bros M. β2 Integrins-Multi-Functional Leukocyte Receptors in Health and Disease. Int J Mol Sci 2020;21:E1402. [PMID: 32092981 DOI: 10.3390/ijms21041402] [Cited by in Crossref: 38] [Cited by in F6Publishing: 39] [Article Influence: 12.7] [Reference Citation Analysis]
505 Digiacomo L, Pozzi D, Palchetti S, Zingoni A, Caracciolo G. Impact of the protein corona on nanomaterial immune response and targeting ability. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1615] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
506 Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch'ng ES. Evaluating the Polarization of Tumor-Associated Macrophages Into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice. Front Oncol 2019;9:1512. [PMID: 32039007 DOI: 10.3389/fonc.2019.01512] [Cited by in Crossref: 208] [Cited by in F6Publishing: 221] [Article Influence: 69.3] [Reference Citation Analysis]
507 Casasanta MA, Yoo CC, Udayasuryan B, Sanders BE, Umaña A, Zhang Y, Peng H, Duncan AJ, Wang Y, Li L, Verbridge SS, Slade DJ. Fusobacterium nucleatum host cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration.. [DOI: 10.1101/2020.01.15.907931] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
508 Lérias JR, de Sousa E, Paraschoudi G, Martins J, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Maia A, Castillo-Martin M, Beltrán A, Ligeiro D, Rao M, Zumla A, Maeurer M. Trained Immunity for Personalized Cancer Immunotherapy: Current Knowledge and Future Opportunities. Front Microbiol 2019;10:2924. [PMID: 31998254 DOI: 10.3389/fmicb.2019.02924] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
509 Sulaieva O, Selezniov O, Shapochka D, Belemets N, Nechay O, Chereshneva Y, Tsomartova D, Ivanova M. Hashimoto's thyroiditis attenuates progression of papillary thyroid carcinoma: deciphering immunological links. Heliyon 2020;6:e03077. [PMID: 31938743 DOI: 10.1016/j.heliyon.2019.e03077] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
510 Kim EY, Choi B, Kim JE, Park SO, Kim SM, Chang EJ. Interleukin-22 Mediates the Chemotactic Migration of Breast Cancer Cells and Macrophage Infiltration of the Bone Microenvironment by Potentiating S1P/SIPR Signaling. Cells 2020;9:E131. [PMID: 31935914 DOI: 10.3390/cells9010131] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
511 Vela D. Iron in the Tumor Microenvironment. Adv Exp Med Biol 2020;1259:39-51. [PMID: 32578170 DOI: 10.1007/978-3-030-43093-1_3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
512 Das CK, Jena BC, Majumder R, Panda HT, Mandal M. The Interplay of Autophagy and the Immune System in the Tumor Microenvironment. Autophagy in tumor and tumor microenvironment 2020. [DOI: 10.1007/978-981-15-6930-2_9] [Reference Citation Analysis]
513 Chen S, Fan J, Zheng D, Liu F, Zeng X, Yan G, Zhang X. A multi-functional drug delivery system based on polyphenols for efficient tumor inhibition and metastasis prevention. Biomater Sci 2020;8:702-11. [DOI: 10.1039/c9bm01646e] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 5.7] [Reference Citation Analysis]
514 Fan CS, Chen LL, Hsu TA, Chen CC, Chua KV, Li CP, Huang TS. Endothelial-mesenchymal transition harnesses HSP90α-secreting M2-macrophages to exacerbate pancreatic ductal adenocarcinoma. J Hematol Oncol 2019;12:138. [PMID: 31847880 DOI: 10.1186/s13045-019-0826-2] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 4.5] [Reference Citation Analysis]
515 Francisco BJ, Palumbo JS. New insights into cancer's exploitation of platelets. J Thromb Haemost 2019;17:2000-3. [PMID: 31797541 DOI: 10.1111/jth.14624] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
516 Turano M, Delrio P, Rega D, Cammarota F, Polverino A, Duraturo F, Izzo P, De Rosa M. Promising Colorectal Cancer Biomarkers for Precision Prevention and Therapy. Cancers (Basel) 2019;11:E1932. [PMID: 31817090 DOI: 10.3390/cancers11121932] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
517 Keeley T, Costanzo-Garvey DL, Cook LM. Unmasking the Many Faces of Tumor-Associated Neutrophils and Macrophages: Considerations for Targeting Innate Immune Cells in Cancer. Trends Cancer 2019;5:789-98. [PMID: 31813456 DOI: 10.1016/j.trecan.2019.10.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 8.8] [Reference Citation Analysis]
518 Liu D. CAR-T "the living drugs", immune checkpoint inhibitors, and precision medicine: a new era of cancer therapy. J Hematol Oncol 2019;12:113. [PMID: 31703740 DOI: 10.1186/s13045-019-0819-1] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 10.3] [Reference Citation Analysis]
519 Mukherjee S, Sonanini D, Maurer A, Daldrup-Link HE. The yin and yang of imaging tumor associated macrophages with PET and MRI. Theranostics 2019;9:7730-48. [PMID: 31695797 DOI: 10.7150/thno.37306] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 7.3] [Reference Citation Analysis]
520 Frión-Herrera Y, Gabbia D, Cuesta-Rubio O, De Martin S, Carrara M. Nemorosone inhibits the proliferation and migration of hepatocellular carcinoma cells. Life Sci 2019;235:116817. [PMID: 31476309 DOI: 10.1016/j.lfs.2019.116817] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
521 Zhang WH, Wang WQ, Gao HL, Yu XJ, Liu L. The tumor immune microenvironment in gastroenteropancreatic neuroendocrine neoplasms. Biochim Biophys Acta Rev Cancer 2019;1872:188311. [PMID: 31442475 DOI: 10.1016/j.bbcan.2019.188311] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
522 Li Y, Wu J, Jiang J, Dong S, Chen Y, He H, Liu C, Zhao J. Chondroitin sulfate-polydopamine modified polyethylene terephthalate with extracellular matrix-mimetic immunoregulatory functions for osseointegration. J Mater Chem B 2019;7:7756-70. [DOI: 10.1039/c9tb01984g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]