BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Javed R, Zia M, Naz S, Aisida SO, Ain NU, Ao Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnology 2020;18:172. [PMID: 33225973 DOI: 10.1186/s12951-020-00704-4] [Cited by in Crossref: 117] [Cited by in F6Publishing: 130] [Article Influence: 39.0] [Reference Citation Analysis]
Number Citing Articles
1 de Azevedo Marques AP, Umisedo NK, Costa JA, Yoshimura EM, Okuno E, Künzel R. The role of capping agents on the trapping levels structure and luminescent emission of SrMoO4 phosphors. Journal of Luminescence 2023;257:119662. [DOI: 10.1016/j.jlumin.2022.119662] [Reference Citation Analysis]
2 Chatterjee T, Raul CK, Mandal S, Pradhan SK, Meikap AK. Effect of surfactant-assisted hierarchical growth of cupric oxide-hydroxyapatite nanocomposite on the dielectric and electrical transport behavior. Physica B: Condensed Matter 2023;650:414560. [DOI: 10.1016/j.physb.2022.414560] [Reference Citation Analysis]
3 Patil TP, Vibhute AA, Patil SL, Dongale TD, Tiwari AP. Green synthesis of gold nanoparticles via Capsicum annum fruit extract: Characterization, antiangiogenic, antioxidant and anti-inflammatory activities. Applied Surface Science Advances 2023;13:100372. [DOI: 10.1016/j.apsadv.2023.100372] [Reference Citation Analysis]
4 Cely-Pinto M, Wang B, Scaiano JC. Understanding α-lipoic acid photochemistry helps to control the synthesis of plasmonic gold nanostructures. Photochem Photobiol Sci 2023. [PMID: 36702995 DOI: 10.1007/s43630-023-00378-5] [Reference Citation Analysis]
5 Bozoglu S, Arvas MB, Varlı HS, Ucar B, Acar T, Karatepe N. Agglomerated serum albumin adsorbed protocatechuic acid coated superparamagnetic iron oxide nanoparticles as a theranostic agent. Nanotechnology 2023;34. [PMID: 36623313 DOI: 10.1088/1361-6528/acb15b] [Reference Citation Analysis]
6 Ganesh Kumar A, Pugazhenthi E, Sankarganesh P, Muthusamy C, Rajasekaran M, Lokesh E, Khusro A, Kavya G. “Cleome rutidosperma leaf extract mediated biosynthesis of silver nanoparticles and anti-candidal, anti-biofilm, anti-cancer, and molecular docking analysis”. Biomass Conv Bioref 2023. [DOI: 10.1007/s13399-023-03806-9] [Reference Citation Analysis]
7 Naz S, Gul A, Zia M, Javed R. Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl Microbiol Biotechnol 2023;:1-23. [PMID: 36635395 DOI: 10.1007/s00253-023-12364-z] [Reference Citation Analysis]
8 Król-Górniak A, Railean V, Pomastowski P, Płociński T, Gloc M, Dobrucka R, Kurzydłowski KJ, Buszewski B. Comprehensive study upon physicochemical properties of bio-ZnO NCs. Sci Rep 2023;13:587. [PMID: 36631546 DOI: 10.1038/s41598-023-27564-w] [Reference Citation Analysis]
9 Kumar A, Das N, Rayavarapu RG. Role of Tunable Gold Nanostructures in Cancer Nanotheranostics: Implications on Synthesis, Toxicity, Clinical Applications and Their Associated Opportunities and Challenges. JNT 2023;4:1-34. [DOI: 10.3390/jnt4010001] [Reference Citation Analysis]
10 Polli F, D'agostino C, Zumpano R, De Martino V, Favero G, Colangelo L, Minisola S, Mazzei F. ASu@MNPs-based electrochemical immunosensor for vitamin D3 serum samples analysis. Talanta 2023;251:123755. [DOI: 10.1016/j.talanta.2022.123755] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Liaqat A, Chughtai MFJ, Khaliq A, Farooq U, Shahbaz M, Ali A, Saeed K, Sameed N, Kanwal M, Wattoo AG, Iqbal R, Mehmood T. Applications of biosurfactants in dairy industry. Applications of Next Generation Biosurfactants in the Food Sector 2023. [DOI: 10.1016/b978-0-12-824283-4.00024-1] [Reference Citation Analysis]
12 Alexpandi R, Abirami G, Murugesan B, Durgadevi R, Swasthikka RP, Cai Y, Ragupathi T, Ravi AV. Tocopherol-assisted magnetic Ag-Fe3O4-TiO2 nanocomposite for photocatalytic bacterial-inactivation with elucidation of mechanism and its hazardous level assessment with zebrafish model. Journal of Hazardous Materials 2023;442:130044. [DOI: 10.1016/j.jhazmat.2022.130044] [Reference Citation Analysis]
13 Haider A, Ikram M, Rafiq A. Nanomaterials; Potential Antibacterial Agents. Green Nanomaterials as Potential Antimicrobials 2023. [DOI: 10.1007/978-3-031-18720-9_7] [Reference Citation Analysis]
14 Yesilot S, Bayram D, Özgöçmen M, Toğay VA. Apoptotic effects of Phlomis armeniaca mediated biosynthesized silver nanoparticles in monolayer (2D) and spheroid (3D) cultures of human breast cancer cell lines. 3 Biotech 2023;13:4. [DOI: 10.1007/s13205-022-03417-7] [Reference Citation Analysis]
15 Šebesta M, Vojtková H, Cyprichová V, Ingle AP, Urík M, Kolenčík M. Mycosynthesis of Metal-Containing Nanoparticles-Synthesis by Ascomycetes and Basidiomycetes and Their Application. Int J Mol Sci 2022;24. [PMID: 36613746 DOI: 10.3390/ijms24010304] [Reference Citation Analysis]
16 Helalat R, Masoumeh M, Rezaei N, Baghbani-arani F. Evaluation of the cytotoxic effects of silver-zinc oxide nanoparticles synthesized by green method on sw480 cell line. emergent mater 2022. [DOI: 10.1007/s42247-022-00413-8] [Reference Citation Analysis]
17 Pedroso‐santana S, Fleitas‐salazar N. The Use of Capping Agents in the Stabilization and Functionalization of Metallic Nanoparticles for Biomedical Applications. Part & Part Syst Charact 2022. [DOI: 10.1002/ppsc.202200146] [Reference Citation Analysis]
18 Ahmed S, Amin MM, El-Korany SM, Sayed S. Pronounced capping effect of olaminosomes as nanostructured platforms in ocular candidiasis management. Drug Deliv 2022;29:2945-58. [PMID: 36073061 DOI: 10.1080/10717544.2022.2120926] [Reference Citation Analysis]
19 Saatci M, Deliormanlı AM. Synthesis, characterization, and 5-fluorouracil release behavior of superparamagnetic γ-Fe2O3/ZnO hetero-nanostructures for biomedical applications. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.12.165] [Reference Citation Analysis]
20 Kavitha V, Rani MP. The influence of Tm3+ on the structural, morphological, lifetime, haemocompatibility, and optical properties of sol–gel-synthesized CaS phosphors. Appl Phys A 2022;128:1053. [DOI: 10.1007/s00339-022-06208-2] [Reference Citation Analysis]
21 Puthukkara P AR, Jose T S, S DL. Green synthesis of iron nanoparticles for malachite green removal. Materials Today Communications 2022;33:104759. [DOI: 10.1016/j.mtcomm.2022.104759] [Reference Citation Analysis]
22 Tumbelaka RM, Istiqomah NI, Kato T, Oshima D, Suharyadi E. High reusability of green-synthesized Fe3O4/TiO2 photocatalyst nanoparticles for efficient degradation of methylene blue dye. Materials Today Communications 2022;33:104450. [DOI: 10.1016/j.mtcomm.2022.104450] [Reference Citation Analysis]
23 Kokkinopoulos I, Karayannis P, Saliakas S, Damilos S, Koumoulos EP. Employing Nanosafety Standards in a Nanomaterial Research Environment: Lessons Learned and Refinement Potential. Standards 2022;2:490-502. [DOI: 10.3390/standards2040034] [Reference Citation Analysis]
24 Som S, Hong J, Gupta KK, Lu C. Surfactant-induced modification in photoluminescence properties of Ce0.9-xY0.1DyxO2-δ phosphors for single host white light emitting diodes. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.12.026] [Reference Citation Analysis]
25 Deivanathan SK, Prakash JTJ. Bio-synthesis of silver nanoparticles using leaf extract of Rhaphidophora pertusa and its characterization, antimicrobial, antioxidant and cytotoxicity activities. Res Chem Intermed 2022. [DOI: 10.1007/s11164-022-04888-2] [Reference Citation Analysis]
26 Timoszyk A, Grochowalska R. Mechanism and Antibacterial Activity of Gold Nanoparticles (AuNPs) Functionalized with Natural Compounds from Plants. Pharmaceutics 2022;14. [PMID: 36559093 DOI: 10.3390/pharmaceutics14122599] [Reference Citation Analysis]
27 Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, Aslam MT, Negm S, Moustafa M, Hassan MU, Wu Z. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. Front Plant Sci 2022;13:976179. [PMID: 36507430 DOI: 10.3389/fpls.2022.976179] [Reference Citation Analysis]
28 Amutha E, Sivakavinesan M, Rajaduraipandian S, Annadurai G. Identification of phytochemicals capping the biosynthesized silver nanoparticles by Wrightia tinctoria and evaluation of their in vitro antioxidant, antibacterial, antilarvicidal, and catalytic activities. emergent mater 2022. [DOI: 10.1007/s42247-022-00422-7] [Reference Citation Analysis]
29 Sarwer Q, Amjad MS, Mehmood A, Binish Z, Mustafa G, Farooq A, Qaseem MF, Abasi F, Pérez de la Lastra JM. Green Synthesis and Characterization of Silver Nanoparticles Using Myrsine africana Leaf Extract for Their Antibacterial, Antioxidant and Phytotoxic Activities. Molecules 2022;27:7612. [DOI: 10.3390/molecules27217612] [Reference Citation Analysis]
30 Kumari M, Sarkar B, Mukherjee K. Nanoscale calcium oxide and its biomedical applications: A comprehensive review. Biocatalysis and Agricultural Biotechnology 2022. [DOI: 10.1016/j.bcab.2022.102506] [Reference Citation Analysis]
31 Deep Yadav D, Jha R, Singh S, Kumar A. Synthesis and characterisation of Nickel oxide nanoparticles using CTAB as capping agent. Materials Today: Proceedings 2022. [DOI: 10.1016/j.matpr.2022.11.012] [Reference Citation Analysis]
32 Ikram H, Rashid AA, Koç M. Synthesis and Characterization of Hematite (α-Fe2O3) Rein-forced Polylactic Acid (PLA) Nanocomposites for Biomedical Applications. Composites Part C: Open Access 2022. [DOI: 10.1016/j.jcomc.2022.100331] [Reference Citation Analysis]
33 Shehroz H, Ali S, Bibi G, Khan T, Jamil S, Khan SR, Hashaam M, Naz S. Comparative investigation of the catalytic application of α/β/γ-MnO2 nanoparticles synthesized by green and chemical approaches. Environmental Technology 2022. [DOI: 10.1080/09593330.2022.2137437] [Reference Citation Analysis]
34 Alhumaimess MS. Nickel Nanoparticles Decorated on Glucose-Derived Carbon Spheres as a Novel, Non-Palladium Catalyst for Epoxidation of Olefin. Catalysts 2022;12:1246. [DOI: 10.3390/catal12101246] [Reference Citation Analysis]
35 El Yamani N, Rundén-Pran E, Collins AR, Longhin EM, Elje E, Hoet P, Vinković Vrček I, Doak SH, Fessard V, Dusinska M. The miniaturized enzyme-modified comet assay for genotoxicity testing of nanomaterials. Front Toxicol 2022;4:986318. [PMID: 36310692 DOI: 10.3389/ftox.2022.986318] [Reference Citation Analysis]
36 Sánchez A. Biogas improvement as renewable energy through conversion into methanol: A perspective of new catalysts based on nanomaterials and metal organic frameworks. Front Nanotechnol 2022;4. [DOI: 10.3389/fnano.2022.1012384] [Reference Citation Analysis]
37 Ramírez-Rosas SL, Delgado-Alvarado E, Sanchez-Vargas LO, Herrera-May AL, Peña-Juarez MG, Gonzalez-Calderon JA. Green Route to Produce Silver Nanoparticles Using the Bioactive Flavonoid Quercetin as a Reducing Agent and Food Anti-Caking Agents as Stabilizers. Nanomaterials (Basel) 2022;12:3545. [PMID: 36234674 DOI: 10.3390/nano12193545] [Reference Citation Analysis]
38 Han HH, Jung S, Kim S, Lee G, Kim S, Kim Y, Hahn SK. Bimetallic Electrocatalyst of Hyaluronate-Au@Pt for Durable Oxygen Reduction in Biofuel Cells. ACS Appl Energy Mater . [DOI: 10.1021/acsaem.2c02091] [Reference Citation Analysis]
39 Kambale EK, Quetin-Leclercq J, Memvanga PB, Beloqui A. An Overview of Herbal-Based Antidiabetic Drug Delivery Systems: Focus on Lipid- and Inorganic-Based Nanoformulations. Pharmaceutics 2022;14:2135. [PMID: 36297570 DOI: 10.3390/pharmaceutics14102135] [Reference Citation Analysis]
40 Miu BA, Dinischiotu A. New Green Approaches in Nanoparticles Synthesis: An Overview. Molecules 2022;27:6472. [PMID: 36235008 DOI: 10.3390/molecules27196472] [Reference Citation Analysis]
41 Dalai N, Dash B, Jena B. Bifunctional Activity of PVP K‐30 Assisted Cobalt Molybdate for Electrocatalytic Water Splitting**. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202202270] [Reference Citation Analysis]
42 Palomino L, Chipoco Haro DA, Gakiya-teruya M, Zhou F, La Rosa-toro A, Krishna V, Rodriguez-reyes JCF. Polyhydroxy Fullerenes Enhance Antibacterial and Electrocatalytic Activity of Silver Nanoparticles. Nanomaterials 2022;12:3321. [DOI: 10.3390/nano12193321] [Reference Citation Analysis]
43 Deivanathan SK, Prakash JTJ. Biosynthesis of silver nanoparticles from Rhaphidophora pertusa leaves extract and its characterization, antimicrobial, anti-oxidant and cytotoxicity activities.. [DOI: 10.21203/rs.3.rs-2056864/v1] [Reference Citation Analysis]
44 Kaur S, Pandey SK, Sharma D, Sharma RK, Wangoo N. Enkephalin loaded and RGD decorated PLGA–poloxamer nanoparticles for effective targeting in cancer cells. J Mater Sci. [DOI: 10.1007/s10853-022-07691-x] [Reference Citation Analysis]
45 Król-górniak A, Railean V, Pomastowski P, Płociński T, Gloc M, Dobrucka R, Kurzydłowski KJ, Buszewski B. Comprehensive study upon physicochemical properties of (bio)ZnO NPs.. [DOI: 10.21203/rs.3.rs-2048193/v1] [Reference Citation Analysis]
46 Rad M, Ebrahimipour G, Bandehpour M, Akhavan O, Yarian F. Enzymatic Formation of Recombinant Antibody-Conjugated Gold Nanoparticles in the Presence of Citrate Groups and Bacteria. Catalysts 2022;12:1048. [DOI: 10.3390/catal12091048] [Reference Citation Analysis]
47 Javed R, Sajjad A, Naz S, Sajjad H, Ao Q. Significance of Capping Agents of Colloidal Nanoparticles from the Perspective of Drug and Gene Delivery, Bioimaging, and Biosensing: An Insight. Int J Mol Sci 2022;23:10521. [PMID: 36142435 DOI: 10.3390/ijms231810521] [Reference Citation Analysis]
48 Jaishree G, Divya G, Rao TS, Chippada MLVP, Raju IM. Biogenic surfactant mediated facile synthesis of visible light sensitized Zn/Mg co-doped TiO2 nanomaterials – a green approach: evaluation of photocatalytic activity by degradation of Amido Black 10B. Sustain Environ Res 2022;32. [DOI: 10.1186/s42834-022-00149-4] [Reference Citation Analysis]
49 John MS, Nagoth JA, Ramasamy KP, Mancini A, Giuli G, Miceli C, Pucciarelli S. Synthesis of Bioactive Silver Nanoparticles Using New Bacterial Strains from an Antarctic Consortium. Marine Drugs 2022;20:558. [DOI: 10.3390/md20090558] [Reference Citation Analysis]
50 Abadi B, Hosseinalipour S, Nikzad S, Pourshaikhali S, Fathalipour-rayeni H, Shafiei G, Adeli-sardou M, Shakibaie M, Forootanfar H. Capping Agents for Selenium Nanoparticles in Biomedical Applications. J Clust Sci. [DOI: 10.1007/s10876-022-02341-3] [Reference Citation Analysis]
51 Mathew AT, Saravanakumar MP. Removal of micropollutants through bio-based materials as a transition to circular bioeconomy: Treatment processes involved, perspectives and bottlenecks. Environ Res 2022;214:114150. [PMID: 36007569 DOI: 10.1016/j.envres.2022.114150] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
52 Rezk N, Abdelsattar AS, Makky S, Hussein AH, Kamel AG, El-shibiny A. New formula of the green synthesised Au@Ag core@shell nanoparticles using propolis extract presented high antibacterial and anticancer activity. AMB Expr 2022;12. [DOI: 10.1186/s13568-022-01450-6] [Reference Citation Analysis]
53 Rubaka C, Gathirwa JW, Malebo HM, Swai H, Hilonga A. Inorganic Nanocarriers: Surface Functionalization, Delivery Utility for Natural Therapeutics - A Review. JBBBE 2022;58:81-96. [DOI: 10.4028/p-96l963] [Reference Citation Analysis]
54 Divband B, Gharehaghaji N, Hassani S. Fe3O4/Graphene-Based Nanotheranostics for Bimodal Magnetic Resonance/Fluorescence Imaging and Cancer Therapy. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02457-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Bisht A, Zuñiga-Bustos M, Prasher G, Gautam S, Poblete H, Singh RP. Stabilization of Carbon Nanotubes and Graphene by Tween-80: Mechanistic Insights from Spectroscopic and Simulation Studies. Langmuir 2022. [PMID: 35947770 DOI: 10.1021/acs.langmuir.2c01190] [Reference Citation Analysis]
56 Kaur M, Gautam A, Guleria P, Singh K, Kumar V. Green synthesis of metal nanoparticles and their environmental applications. Current Opinion in Environmental Science & Health 2022. [DOI: 10.1016/j.coesh.2022.100390] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Ragunathan SCB, Rejeeth C, Muthusamy G, Abdulhaniff P, Palvannan T. Green synthesis of silver nanoparticles from corn cob aqueous extract for colorimetric cysteine detection in serum simulated with cysteine samples. Optik 2022;264:169381. [DOI: 10.1016/j.ijleo.2022.169381] [Reference Citation Analysis]
58 Rajeshkumar S, Sellami H, Ali D, Chitra S, Ponnanikajamideen M, Arunachalam K, R L. Bioconjugation of Fluorescent Gold Nanoparticles Synthesized Using Marine Brown Algae Sargassum longifolium. Journal of Nanomaterials 2022;2022:1-9. [DOI: 10.1155/2022/6765227] [Reference Citation Analysis]
59 Gupta PK, Park JY, Son SE, Venkatesan J, Seong GH. l -Cysteine-Functionalized Ru in Chain-like Nanostructures for Colorimetric Detection of Lysophosphatidylcholine. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c01974] [Reference Citation Analysis]
60 Munyayi TA, Vorster BC, Mulder DW. The Effect of Capping Agents on Gold Nanostar Stability, Functionalization, and Colorimetric Biosensing Capability. Nanomaterials 2022;12:2470. [DOI: 10.3390/nano12142470] [Reference Citation Analysis]
61 Nayak RR, Gupta T, Chauhan RP. Plant metabolites assisted green synthesis of ZnSe: structural, optical and transport properties. Chem Pap . [DOI: 10.1007/s11696-022-02350-6] [Reference Citation Analysis]
62 Kanniah P, Balakrishnan S, Subramanian ER, Sudalaimani DK, Radhamani J, Sivasubramaniam S. Preliminary investigation on the impact of engineered PVP-capped and uncapped silver nanoparticles on Eudrilus eugeniae, a terrestrial ecosystem model. Environ Sci Pollut Res Int 2022. [PMID: 35829879 DOI: 10.1007/s11356-022-21898-0] [Reference Citation Analysis]
63 González-vega JG, García-ramos JC, Chavez-santoscoy RA, Castillo-quiñones JE, Arellano-garcia ME, Toledano-magaña Y. Lung Models to Evaluate Silver Nanoparticles’ Toxicity and Their Impact on Human Health. Nanomaterials 2022;12:2316. [DOI: 10.3390/nano12132316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
64 Mohammed KA, M. Hadi MM, Hussein EH, Al-kabbi AS, Ziadan KM. Properties and White Light Photoresponses of CdSe Colloidal Nanoparticles. MSF 2022;1065:119-26. [DOI: 10.4028/p-8x77b7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
65 Zhang L, Liu S, Li Y, Liang M, Zhao H, Yang W. Monoglycocalix[4]arene-based nanoparticles for tumor selective drug delivery via GLUT1 recognition of hyperglycolytic cancers. Org Biomol Chem 2022;20:4884-7. [PMID: 35670433 DOI: 10.1039/d2ob00656a] [Reference Citation Analysis]
66 Susanti D, Haris MS, Taher M, Khotib J. Natural Products-Based Metallic Nanoparticles as Antimicrobial Agents. Front Pharmacol 2022;13:895616. [PMID: 35721199 DOI: 10.3389/fphar.2022.895616] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
67 Amrillah T. All Shapes and Phases of Nanometer-Sized Iron Oxides Made from Natural Sources and Waste Material via Green Synthesis Approach: A Review. Crystal Growth & Design. [DOI: 10.1021/acs.cgd.2c00485] [Reference Citation Analysis]
68 Kumar L, Mohan L, Anand S, Bhardwaj D, Bharadvaja N. Phyconanoremediation: a sustainable approach to deal with environmental pollutants heavy metals and dyes. Vegetos 2022. [DOI: 10.1007/s42535-022-00399-y] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
69 Villate JMZ, Rojas JV, Hahn MB, Puerta JA. Synthesis of 198Au nanoparticles sub 10 nm due optimization on local dose by Monte Carlo simulations for cancer treatment. J Radioanal Nucl Chem. [DOI: 10.1007/s10967-022-08355-5] [Reference Citation Analysis]
70 Khane Y, Benouis K, Albukhaty S, Sulaiman GM, Abomughaid MM, Al Ali A, Aouf D, Fenniche F, Khane S, Chaibi W, Henni A, Bouras HD, Dizge N. Green Synthesis of Silver Nanoparticles Using Aqueous Citrus limon Zest Extract: Characterization and Evaluation of Their Antioxidant and Antimicrobial Properties. Nanomaterials (Basel) 2022;12:2013. [PMID: 35745352 DOI: 10.3390/nano12122013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 19.0] [Reference Citation Analysis]
71 Yu R, Li W, Cao J, Du Y, Ye H, Shan W, Chen X, Huiping W, Cai S, Yang S, Yang N. Green synthesis of AgNPs, characterization as an effective wound healing agent in the wound care after anorectal surgery. Mater Res Express 2022;9:065002. [DOI: 10.1088/2053-1591/ac0d2c] [Reference Citation Analysis]
72 Pandey S, Baburaj N, Joseph S, Joseph J. Resonant optical modes in periodic nanostructures. ISSS J Micro Smart Syst 2022;11:113-137. [DOI: 10.1007/s41683-021-00087-0] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
73 Saravanakumar K, Sathiyaseelan A, Priya VV, Wang M. PEGylated palladium doped ceria oxide nanoparticles (Pd-dop-CeO2-PEG NPs) for inhibition of bacterial pathogens and human lung cancer cell proliferation. Journal of Drug Delivery Science and Technology 2022;72:103367. [DOI: 10.1016/j.jddst.2022.103367] [Reference Citation Analysis]
74 Abdullahi S, Aydarous A, Saeed A, Salah N. Fabrication of size-controlled Alq3 nanoparticles within PMMA matrix in the form of nanocomposite sheet for potential use as UV dosimeter. Optical Materials 2022;128:112402. [DOI: 10.1016/j.optmat.2022.112402] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Luzala MM, Muanga CK, Kyana J, Safari JB, Zola EN, Mbusa GV, Nuapia YB, Liesse JI, Nkanga CI, Krause RWM, Balčiūnaitienė A, Memvanga PB. A Critical Review of the Antimicrobial and Antibiofilm Activities of Green-Synthesized Plant-Based Metallic Nanoparticles. Nanomaterials 2022;12:1841. [DOI: 10.3390/nano12111841] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
76 Marinescu L, Ficai D, Ficai A, Oprea O, Nicoara AI, Vasile BS, Boanta L, Marin A, Andronescu E, Holban A. Comparative Antimicrobial Activity of Silver Nanoparticles Obtained by Wet Chemical Reduction and Solvothermal Methods. IJMS 2022;23:5982. [DOI: 10.3390/ijms23115982] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
77 Alhawiti AS. Citric acid-mediated green synthesis of selenium nanoparticles: antioxidant, antimicrobial, and anticoagulant potential applications. Biomass Conv Bioref . [DOI: 10.1007/s13399-022-02798-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Ismail NAS, Lee JX, Yusof F. Platinum Nanoparticles: The Potential Antioxidant in the Human Lung Cancer Cells. Antioxidants 2022;11:986. [DOI: 10.3390/antiox11050986] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
79 Zein R, Alghoraibi I, Soukkarieh C, Ismail MT, Alahmad A. Influence of Polyvinylpyrrolidone Concentration on Properties and Anti-Bacterial Activity of Green Synthesized Silver Nanoparticles. Micromachines 2022;13:777. [DOI: 10.3390/mi13050777] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
80 Hermosilla E, Díaz M, Vera J, Seabra AB, Tortella G, Parada J, Rubilar O. Molecular Weight Identification of Compounds Involved in the Fungal Synthesis of AgNPs: Effect on Antimicrobial and Photocatalytic Activity. Antibiotics 2022;11:622. [DOI: 10.3390/antibiotics11050622] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
81 Ehsan M, Waheed A, Ullah A, Kazmi A, Ali A, Raja NI, Mashwani Z, Sultana T, Mustafa N, Ikram M, Li H, Kim BS. Plant-Based Bimetallic Silver-Zinc Oxide Nanoparticles: A Comprehensive Perspective of Synthesis, Biomedical Applications, and Future Trends. BioMed Research International 2022;2022:1-20. [DOI: 10.1155/2022/1215183] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Kumar I, Gangwar C, Yaseen B, Pandey PK, Mishra SK, Naik RM. Kinetic and Mechanistic Studies of the Formation of Silver Nanoparticles by Nicotinamide as a Reducing Agent. ACS Omega 2022;7:13778-88. [PMID: 35559139 DOI: 10.1021/acsomega.2c00046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
83 Santhosh PB, Genova J, Chamati H. Green Synthesis of Gold Nanoparticles: An Eco-Friendly Approach. Chemistry 2022;4:345-69. [DOI: 10.3390/chemistry4020026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
84 Kermani G, Karimi E, Tabrizi MH. Hybrid Nanoarchitectonics of Chitosan-Cerium Oxide Nanoparticles for Anticancer Potentials. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02329-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
85 Javed R, Ain NU, Gul A, Arslan Ahmad M, Guo W, Ao Q, Tian S. Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up-to-date review. IET Nanobiotechnol 2022. [PMID: 35411585 DOI: 10.1049/nbt2.12085] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
86 Yoo W, Lee W, Kim HN, Jeong J, Park HH, Ahn JH, Jung D, Lee J, Kim J, Lee SW, Cho W, Kim S. Nanodiamond as a Cytokine Sponge in Infectious Diseases. Front Bioeng Biotechnol 2022;10:862495. [DOI: 10.3389/fbioe.2022.862495] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
87 Mobaraki F, Momeni M, Barghbani M, Far BF, Hosseinian S, Hosseini SM. Extract-mediated biosynthesis and characterization of gold nanoparticles: Exploring their protective effect against cyclophosphamide-induced oxidative stress in rat testis. Journal of Drug Delivery Science and Technology 2022. [DOI: 10.1016/j.jddst.2022.103306] [Reference Citation Analysis]
88 Saikia TC, Iraqui S, Rashid MH. Synergistic effect of PEG-coated ZnO nanoparticles and ultrasonic irradiation on the C–B bond cleavage of aryl boronic acids. Sustainable Chemistry and Pharmacy 2022;25:100613. [DOI: 10.1016/j.scp.2022.100613] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
89 Anadozie SO, Adewale OB, Fadaka AO, Afolabi OB, Roux S. Synthesis of gold nanoparticles using extract of Carica papaya fruit: Evaluation of its antioxidant properties and effect on colorectal and breast cancer cells. Biocatalysis and Agricultural Biotechnology 2022. [DOI: 10.1016/j.bcab.2022.102348] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Kumar V, Research Scholar, Faculty of Pharmacy, Rajasthan University of Health Sciences, Jaipur 302033, Rajasthan, India, Lakhawat SS, Kumar S, Chaudhary AA, Rudayni HA, Al-zahrani M, Gilhotra UK, Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan India, Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan India, Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh, Saudi Arabia, Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh, Saudi Arabia, Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh, Saudi Arabia, Department of Pharmacology, G.D.Memorial College of Pharmacy, Jodhpur 342005, Rajasthan, India. Rapid biogenic fabrication of silver nanoparticles using Ziziphus nummularia under optimised conditions and evaluation of their antimicrobial synergy. DJNB 2022;17:421-430. [DOI: 10.15251/djnb.2022.172.421] [Reference Citation Analysis]
91 Tripathi N, Goshisht MK. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS Appl Bio Mater 2022. [PMID: 35358388 DOI: 10.1021/acsabm.2c00014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
92 Berini F, Orlandi V, Gornati R, Bernardini G, Marinelli F. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: hope or reality? Biotechnol Adv 2022;:107948. [PMID: 35337933 DOI: 10.1016/j.biotechadv.2022.107948] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
93 García AC, Moral-vico J, Abo Markeb A, Sánchez A. Conversion of Carbon Dioxide into Methanol Using Cu–Zn Nanostructured Materials as Catalysts. Nanomaterials 2022;12:999. [DOI: 10.3390/nano12060999] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
94 Al-mushki AAA, Ahmed AAA, Abdulwahab AM, Al-asbahi BA, Abduljalil JMA, Saad FAA, Al-hada NM, Qaid SMH, Ghaithan HM. Structural, optical, and antibacterial characteristics of mixed metal oxide CdO–NiO–Fe2O3 nanocomposites prepared using a self-combustion method at different polyvinyl alcohol concentrations. Appl Phys A 2022;128. [DOI: 10.1007/s00339-022-05428-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
95 Kumar N, Verma S, Park J, Chandra Srivastava V, Naushad M. Evaluation of photocatalytic performances of PEG and PVP capped zinc sulfide nanoparticles towards organic environmental pollutant in presence of sunlight. Chemosphere 2022;298:134281. [PMID: 35283147 DOI: 10.1016/j.chemosphere.2022.134281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
96 Das A, Prabhu MPT, Sarkar N. Synthesis, characterization, and in vitro DPPH radical scavenging assay study of PEG-capped carbon nanoparticles derived from Butea monosperma flower extract. Adv Nat Sci: Nanosci Nanotechnol 2022;13:015002. [DOI: 10.1088/2043-6262/ac5498] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
97 Iatridis N, Kougioumtzi A, Vlataki K, Papadaki S, Magklara A. Anti-Cancer Properties of Stevia rebaudiana; More than a Sweetener. Molecules 2022;27:1362. [PMID: 35209150 DOI: 10.3390/molecules27041362] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
98 Goel A, Tomar S. Green synthesis and characterization of Murraya koenigii leaf extract mediated IrO 2 , SnO 2 , and Ir-SnO 2 nanoparticles. Inorganic and Nano-Metal Chemistry. [DOI: 10.1080/24701556.2022.2034016] [Reference Citation Analysis]
99 Roy N, Alex SA, Chandrasekaran N, Kannabiran K, Mukherjee A. Studies on the removal of acid violet 7 dye from aqueous solutions by green ZnO@Fe3O4 chitosan-alginate nanocomposite synthesized using Camellia sinensis extract. J Environ Manage 2022;303:114128. [PMID: 34823906 DOI: 10.1016/j.jenvman.2021.114128] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Sarkar RD, Lahkar P, Kalita MC. Glycosmis pentaphylla (Retz.) DC leaf extract mediated synthesis of selenium nanoparticle and investigation of its antibacterial activity against urinary tract pathogens. Bioresource Technology Reports 2022;17:100894. [DOI: 10.1016/j.biteb.2021.100894] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
101 Abdullahi S, Aydarous A, Salah N. Fabrication of Alq3/PMMA nanocomposite sheet and its potential applications as radiation dosimeter. Journal of Luminescence 2022;242:118588. [DOI: 10.1016/j.jlumin.2021.118588] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
102 Sidhu AK, Verma N, Kaushal P. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their Therapeutic Potential. Front Nanotechnol 2022;3:801620. [DOI: 10.3389/fnano.2021.801620] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
103 Rafeeq H, Hussain A, Ambreen A, Zill-e-huma, Waqas M, Bilal M, Iqbal HMN. Functionalized nanoparticles and their environmental remediation potential: a review. J Nanostruct Chem. [DOI: 10.1007/s40097-021-00468-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
104 Sahu S, Sharma S, Kurrey R, Ghosh KK. Recent advances on gold and silver nanoparticle-based colorimetric strategies for the detection of different substances and SARS-CoV-2: a comprehensive review. Environ Sci : Nano 2022. [DOI: 10.1039/d2en00503d] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
105 Anjum S, Nawaz K, Ahmad B, Hano C, Abbasi BH. Green synthesis of biocompatible core–shell (Au–Ag) and hybrid (Au–ZnO and Ag–ZnO) bimetallic nanoparticles and evaluation of their potential antibacterial, antidiabetic, antiglycation and anticancer activities. RSC Adv 2022;12:23845-59. [DOI: 10.1039/d2ra03196e] [Reference Citation Analysis]
106 Khan MAR, Al Mamun MS, Habib MA, Islam AN, Mahiuddin M, Karim KMR, Naime J, Saha P, Dey SK, Ara MH. A review on gold nanoparticles: Biological synthesis, characterizations, and analytical applications. Results in Chemistry 2022;4:100478. [DOI: 10.1016/j.rechem.2022.100478] [Reference Citation Analysis]
107 Morin J, Fujimoto K, Preston A, Guillen DP. Synthesis Methods for Nanoparticle Morphology Control in Energy Applications. The Minerals, Metals & Materials Series 2022. [DOI: 10.1007/978-3-030-92559-8_3] [Reference Citation Analysis]
108 Javed R, Yucesan B, Zia M, Gurel E. Nanoelicitation: A Promising and Emerging Technology for Triggering the Sustainable In Vitro Production of Secondary Metabolites in Medicinal Plants. Plant and Nanoparticles 2022. [DOI: 10.1007/978-981-19-2503-0_10] [Reference Citation Analysis]
109 Karmakar G, Shah AY, Tyagi A, Wadawale AP, Kedarnath G, Kumar NN, Bahadur J. Synthesis of photo-responsive indium selenides (InSe and In 2 Se 3 ) from tris(4,6-dimethyl-2-pyrimidylselenolato)indium( iii ) as a molecular precursor. New J Chem 2022;46:3871-81. [DOI: 10.1039/d1nj06167d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
110 Nagati V, Tenugu S, Pasupulati AK. Stability of therapeutic nano-drugs during storage and transportation as well as after ingestion in the human body. Advances in Nanotechnology-Based Drug Delivery Systems 2022. [DOI: 10.1016/b978-0-323-88450-1.00020-x] [Reference Citation Analysis]
111 Mohammed KA, Abdulridha SA, Aljbory EH, Alkhayatt AHO, Zabibah RS, Alrubaie AJ, Rady SK, Kizar SH, Hariz SS, Kadhem MJ. Capping agent effect on optical properties of Fe2O3 nanoparticles. Materials Today: Proceedings 2022;56:2010-2015. [DOI: 10.1016/j.matpr.2021.11.346] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
112 Britto Hurtado R, Delgado-beleño Y, Martinez-nuñez C, Cortez-valadez M, Flores-acosta M. Biosynthesis and antibacterial activity of Cu and CuO nanoparticles against pathogenic microorganisms. Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems 2022. [DOI: 10.1016/b978-0-12-823833-2.00013-1] [Reference Citation Analysis]
113 Shahri NNM, Taha H, S. A. Hamid MH, Kusrini E, Lim J, Hobley J, Usman A. Antimicrobial activity of silver sulfide quantum dots functionalized with highly conjugated Schiff bases in a one-step synthesis. RSC Adv 2022;12:3136-46. [DOI: 10.1039/d1ra08296e] [Reference Citation Analysis]
114 Krishnan SG, Nand D, Sivadas S, Alfarhan A, Muthusamy K. CuO/NiO bimetallic nanocomposite: A facile DNA assisted synthetic approach and evaluation of bio efficacy. Journal of King Saud University - Science 2022;34:101718. [DOI: 10.1016/j.jksus.2021.101718] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
115 Atar H, Çölgeçen H. Gümüş Nanopartiküllerinin Biyosentezi ve Biyosensör Materyali Olarak Kullanımı. Commagene Journal of Biology 2021. [DOI: 10.31594/commagene.941022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
116 Malyugina S, Skalickova S, Skladanka J, Slama P, Horky P. Biogenic Selenium Nanoparticles in Animal Nutrition: A Review. Agriculture 2021;11:1244. [DOI: 10.3390/agriculture11121244] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
117 Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J Funct Biomater 2021;12:70. [PMID: 34940549 DOI: 10.3390/jfb12040070] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
118 Heiba ZK, El-naggar AM, Mohamed MB, Altowairqi Y, Kamal AM. Noval properties of PVA/PVP polymer blend doped by nano-ZnO/M (M = Co, Cu, Mn, V). Appl Phys A 2021;127. [DOI: 10.1007/s00339-021-05129-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
119 Park Y, Faivre D. Diversity of Microbial Metal Sulfide Biomineralization. Chempluschem 2021. [PMID: 34898036 DOI: 10.1002/cplu.202100457] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
120 Ansari SA, Alshanberi AM. Clinical Application of Silver Nanoparticles Coated by Benzalkonium Chloride. Coatings 2021;11:1382. [DOI: 10.3390/coatings11111382] [Reference Citation Analysis]
121 Mdlovu NV, Lin KS, Weng MT, Lin YS. Design of doxorubicin encapsulated pH-/thermo-responsive and cationic shell-crosslinked magnetic drug delivery system. Colloids Surf B Biointerfaces 2021;209:112168. [PMID: 34715504 DOI: 10.1016/j.colsurfb.2021.112168] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
122 Tinajero-Díaz E, Salado-Leza D, Gonzalez C, Martínez Velázquez M, López Z, Bravo-Madrigal J, Knauth P, Flores-Hernández FY, Herrera-Rodríguez SE, Navarro RE, Cabrera-Wrooman A, Krötzsch E, Carvajal ZYG, Hernández-Gutiérrez R. Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications. Pharmaceutics 2021;13:1719. [PMID: 34684012 DOI: 10.3390/pharmaceutics13101719] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
123 Wang H, Zheng Y, Sun Q, Zhang Z, Zhao M, Peng C, Shi S. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J Nanobiotechnology 2021;19:322. [PMID: 34654430 DOI: 10.1186/s12951-021-01062-5] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
124 Dhupar A, Sharma V, Kumar S, Gaur A, Sharma JK. Role of Aluminium Concentration on the Structural, Morphological, and Optical Properties of ZnS Nanoparticles. J Electron Mater 2021;50:7174-87. [DOI: 10.1007/s11664-021-09252-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
125 Alijagic A, Bonura A, Barbero F, Puntes VF, Gervasi F, Pinsino A. Immunomodulatory Function of Polyvinylpyrrolidone (PVP)-Functionalized Gold Nanoparticles in Vibrio-Stimulated Sea Urchin Immune Cells. Nanomaterials (Basel) 2021;11:2646. [PMID: 34685085 DOI: 10.3390/nano11102646] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
126 Agrawal K, Gupta VK, Verma P. Microbial cell factories a new dimension in bio-nanotechnology: exploring the robustness of nature. Crit Rev Microbiol 2021;:1-31. [PMID: 34555291 DOI: 10.1080/1040841X.2021.1977779] [Reference Citation Analysis]
127 Zhang M, Shao S, Yue H, Wang X, Zhang W, Chen F, Zheng L, Xing J, Qin Y. High Stability Au NPs: From Design to Application in Nanomedicine. Int J Nanomedicine 2021;16:6067-94. [PMID: 34511906 DOI: 10.2147/IJN.S322900] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
128 Gqoba SS, Rodrigues R, Mphahlele SL, Ndala Z, Airo M, Fadojutimi PO, Hümmelgen IA, Linganiso EC, Moloto MJ, Moloto N. Hierarchical Nanoflowers of Colloidal WS2 and Their Potential Gas Sensing Properties for Room Temperature Detection of Ammonia. Processes 2021;9:1491. [DOI: 10.3390/pr9091491] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
129 Rejinold NS, Piao H, Jin GW, Choi G, Choy JH. Injectable niclosamide nanohybrid as an anti-SARS-CoV-2 strategy. Colloids Surf B Biointerfaces 2021;208:112063. [PMID: 34482191 DOI: 10.1016/j.colsurfb.2021.112063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
130 Chugh D, Viswamalya VS, Das B. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. J Genet Eng Biotechnol 2021;19:126. [PMID: 34427807 DOI: 10.1186/s43141-021-00228-w] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 9.5] [Reference Citation Analysis]
131 Banu AN, Kudesia N, Raut AM, Pakrudheen I, Wahengbam J. Toxicity, bioaccumulation, and transformation of silver nanoparticles in aqua biota: a review. Environ Chem Lett 2021;19:4275-96. [DOI: 10.1007/s10311-021-01304-w] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 4.5] [Reference Citation Analysis]
132 Hassanisaadi M, Bonjar GHS, Rahdar A, Pandey S, Hosseinipour A, Abdolshahi R. Environmentally Safe Biosynthesis of Gold Nanoparticles Using Plant Water Extracts. Nanomaterials (Basel) 2021;11:2033. [PMID: 34443864 DOI: 10.3390/nano11082033] [Cited by in Crossref: 34] [Cited by in F6Publishing: 38] [Article Influence: 17.0] [Reference Citation Analysis]
133 Kanniah P, Chelliah P, Thangapandi JR, Gnanadhas G, Mahendran V, Robert M. Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. Int J Biol Macromol 2021:S0141-8130(21)01715-3. [PMID: 34389391 DOI: 10.1016/j.ijbiomac.2021.08.056] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
134 Khusnuriyalova AF, Caporali M, Hey‐hawkins E, Sinyashin OG, Yakhvarov DG. Preparation of Cobalt Nanoparticles. Eur J Inorg Chem 2021;2021:3023-47. [DOI: 10.1002/ejic.202100367] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
135 Tortella G, Rubilar O, Fincheira P, Pieretti JC, Duran P, Lourenço IM, Seabra AB. Bactericidal and Virucidal Activities of Biogenic Metal-Based Nanoparticles: Advances and Perspectives. Antibiotics (Basel) 2021;10:783. [PMID: 34203129 DOI: 10.3390/antibiotics10070783] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 8.0] [Reference Citation Analysis]
136 Khan MA, Singh D, Ahmad A, Siddique HR. Revisiting inorganic nanoparticles as promising therapeutic agents: A paradigm shift in oncological theranostics. Eur J Pharm Sci 2021;164:105892. [PMID: 34052295 DOI: 10.1016/j.ejps.2021.105892] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 9.5] [Reference Citation Analysis]
137 Tag HM, Saddiq AA, Alkinani M, Hagagy N. Biosynthesis of silver nanoparticles using Haloferax sp. NRS1: image analysis, characterization, in vitro thrombolysis and cytotoxicity. AMB Express 2021;11:75. [PMID: 34041605 DOI: 10.1186/s13568-021-01235-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
138 Kohl Y, Hesler M, Drexel R, Kovar L, Dähnhardt-Pfeiffer S, Selzer D, Wagner S, Lehr T, von Briesen H, Meier F. Influence of Physicochemical Characteristics and Stability of Gold and Silver Nanoparticles on Biological Effects and Translocation across an Intestinal Barrier-A Case Study from In Vitro to In Silico. Nanomaterials (Basel) 2021;11:1358. [PMID: 34063963 DOI: 10.3390/nano11061358] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
139 Mauro N, Utzeri MA, Varvarà P, Cavallaro G. Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 2021;26:3085. [PMID: 34064173 DOI: 10.3390/molecules26113085] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
140 Ameen F, Al-homaidan AA, Al-sabri A, Almansob A, Alnadhari S. Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus Cladosporium halotolerans. Appl Nanosci. [DOI: 10.1007/s13204-021-01874-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
141 Ullah S, Shah SWA, Qureshi MT, Hussain Z, Ullah I, Kalsoom UE, Rahim F, Rahman SSU, Sultana N, Khan MK. Antidiabetic and Hypolipidemic Potential of Green AgNPs against Diabetic Mice. ACS Appl Bio Mater 2021;4:3433-42. [PMID: 35014427 DOI: 10.1021/acsabm.1c00005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
142 Al-enazi NM, Ameen F, Alsamhary K, Dawoud T, Al-khattaf F, Alnadhari S. Tin oxide nanoparticles (SnO2-NPs) synthesis using Galaxaura elongata and its anti-microbial and cytotoxicity study: a greenery approach. Appl Nanosci. [DOI: 10.1007/s13204-021-01828-1] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
143 Parsa M, Entezari MH, Meshkini A. Sono-synthesis approach improves anticancer activity of ZnO nanoparticles: reactive oxygen species depletion for killing human osteosarcoma cells. Nanomedicine (Lond) 2021;16:657-71. [PMID: 33754834 DOI: 10.2217/nnm-2020-0427] [Reference Citation Analysis]
144 Aisida SO, Ali A, Oyewande OE, Ahmad I, Ul-hamid A, Zhao T, Maaza M, Ezema FI. Biogenic synthesis enhanced structural, morphological, magnetic and optical properties of zinc ferrite nanoparticles for moderate hyperthermia applications. J Nanopart Res 2021;23. [DOI: 10.1007/s11051-021-05149-w] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
145 Vishwanath R, Negi B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Current Research in Green and Sustainable Chemistry 2021;4:100205. [DOI: 10.1016/j.crgsc.2021.100205] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
146 Malafatti JOD, Federal University of São Carlos, Chemistry Department, Rod. Washington Luís, Km 235-C. P.676, zip code: 13.565-905, São Carlos-SP, Brazil, de Oliveira Ruellas TM, Meirelles MR, Thomazi AC, Renda CG, Paris EC, Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, XV de Novembro St., 1452, zip code: 13560-970, São Carlos, SP, Brazil, Federal University of São Carlos, Department of Materials Engineering, Rod. Washington Luís, Km 235-C. P.676, zip code: 13.565-905, São Carlos-SP, Brazil, Institute of Chemistry, University of São Paulo, Av. Trab. São Carlense, 400, zip code: 13566-590, São Carlos-SP, Brazil. Nanocarriers of Eu<sup>3+</sup> doped silica nanoparticles modified by APTES for luminescent monitoring of cloxacillin. AIMSMATES 2021;8:760-775. [DOI: 10.3934/matersci.2021046] [Reference Citation Analysis]