BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Winkler HC, Notter T, Meyer U, Naegeli H. Critical review of the safety assessment of titanium dioxide additives in food. J Nanobiotechnology 2018;16:51. [PMID: 29859103 DOI: 10.1186/s12951-018-0376-8] [Cited by in Crossref: 71] [Cited by in F6Publishing: 55] [Article Influence: 17.8] [Reference Citation Analysis]
Number Citing Articles
1 Heller A, Coffman SS, Friedman KA. Obesity-Dependent Accumulation of Titanium in the Pancreas of Type 2 Diabetic Donors. Chem Res Toxicol 2019;32:1351-6. [DOI: 10.1021/acs.chemrestox.8b00304] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
2 Schwarzfischer M, Rogler G. The Intestinal Barrier—Shielding the Body from Nano- and Microparticles in Our Diet. Metabolites 2022;12:223. [DOI: 10.3390/metabo12030223] [Reference Citation Analysis]
3 Chen Z, Han S, Zhou S, Feng H, Liu Y, Jia G. Review of health safety aspects of titanium dioxide nanoparticles in food application. NanoImpact 2020;18:100224. [DOI: 10.1016/j.impact.2020.100224] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
4 Hurrell RF. The Potential of Iodine and Iron Double-Fortified Salt Compared with Iron-Fortified Staple Foods to Increase Population Iron Status. J Nutr 2021;151:47S-63S. [PMID: 33582784 DOI: 10.1093/jn/nxaa204] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Abdel Aal SM, Ahmed SM, Abdelrahman SA, Abdelrahman AA, Samy W. Duration-dependent effects induced by titanium dioxide nanoparticles on pancreas of adult male albino rats (histological and biochemical study). Ultrastruct Pathol 2020;44:342-58. [PMID: 32600082 DOI: 10.1080/01913123.2020.1786203] [Reference Citation Analysis]
6 Malakar A, Kanel SR, Ray C, Snow DD, Nadagouda MN. Nanomaterials in the environment, human exposure pathway, and health effects: A review. Sci Total Environ 2021;759:143470. [PMID: 33248790 DOI: 10.1016/j.scitotenv.2020.143470] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
7 EFSA (European Food Safety Authority). EFSA statement on the review of the risks related to the exposure to the food additive titanium dioxide (E 171) performed by the French Agency for Food, Environmental and Occupational Health and Safety (ANSES). EFSA J 2019;17:e05714. [PMID: 32626336 DOI: 10.2903/j.efsa.2019.5714] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
8 Chen Z, Han S, Zheng P, Zhou D, Zhou S, Jia G. Effect of oral exposure to titanium dioxide nanoparticles on lipid metabolism in Sprague-Dawley rats. Nanoscale 2020;12:5973-86. [DOI: 10.1039/c9nr10947a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
9 Anastasi E, Riviere G, Teste B; ANSES‐ French Agency for Food, Environmental and Occupational Health & Safety, France. Nanomaterials in Food - Prioritisation & Assessment. EFSA J 2019;17:e170909. [PMID: 32626467 DOI: 10.2903/j.efsa.2019.e170909] [Reference Citation Analysis]
10 Dugershaw BB, Aengenheister L, Hansen SSK, Hougaard KS, Buerki-Thurnherr T. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part Fibre Toxicol 2020;17:31. [PMID: 32653006 DOI: 10.1186/s12989-020-00359-x] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
11 Syngouna VI, Kourtaki KI, Georgopoulou MP, Chrysikopoulos CV. The role of nanoparticles (titanium dioxide, graphene oxide) on the inactivation of co-existing bacteria in the presence and absence of quartz sand. Environ Sci Pollut Res Int 2021. [PMID: 34709550 DOI: 10.1007/s11356-021-17086-1] [Reference Citation Analysis]
12 Hou K, Zhang Y, Bao M, Liu Y, Wang J, Xin C, Wei Z, Zhang H, Wu Z, Wang Z. Biosafety of micro/nanomotors towards medical application. Mater Adv 2021;2:3441-58. [DOI: 10.1039/d1ma00174d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
13 Filippini T, Tancredi S, Malagoli C, Malavolti M, Bargellini A, Vescovi L, Nicolini F, Vinceti M. Dietary Estimated Intake of Trace Elements: Risk Assessment in an Italian Population. Expo Health 2020;12:641-55. [DOI: 10.1007/s12403-019-00324-w] [Cited by in Crossref: 18] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
14 Shi J, Han S, Zhang J, Liu Y, Chen Z, Jia G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NanoImpact 2022;25:100377. [DOI: 10.1016/j.impact.2021.100377] [Reference Citation Analysis]
15 Razzaq Z, Khalid A, Ahmad P, Farooq M, Khandaker MU, Sulieman A, Rehman IU, Shakeel S, Khan A. Photocatalytic and Antibacterial Potency of Titanium Dioxide Nanoparticles: A Cost-Effective and Environmentally Friendly Media for Treatment of Air and Wastewater. Catalysts 2021;11:709. [DOI: 10.3390/catal11060709] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
16 Deschênes L, Ells T. Bacteria-nanoparticle interactions in the context of nanofouling. Adv Colloid Interface Sci 2020;277:102106. [PMID: 31981890 DOI: 10.1016/j.cis.2020.102106] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
17 Hofmanová JK, Mason J, Batchelor HK. Sensory aspects of acceptability of bitter-flavoured 7.5 mm film-coated tablets in adults, preschool and school children. International Journal of Pharmaceutics 2020;585:119511. [DOI: 10.1016/j.ijpharm.2020.119511] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Han S, Chen ZJ, Zhou D, Zheng P, Zhang JH, Jia G. [Effects of titanium dioxide nanoparticles on fecal metabolome in rats after oral administration for 90 days]. Beijing Da Xue Xue Bao Yi Xue Ban 2020;52:457-63. [PMID: 32541978 DOI: 10.19723/j.issn.1671-167X.2020.03.010] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
19 Abdel-Wahhab MA, El-Nekeety AA, Mohammed HE, El-Messery TM, Roby MH, Abdel-Aziem SH, Hassan NS. Synthesis of encapsulated fish oil using whey protein isolate to prevent the oxidative damage and cytotoxicity of titanium dioxide nanoparticles in rats. Heliyon 2021;7:e08456. [PMID: 34901503 DOI: 10.1016/j.heliyon.2021.e08456] [Reference Citation Analysis]
20 Chen Z, Han S, Zheng P, Zhou S, Jia G. Combined effect of titanium dioxide nanoparticles and glucose on the blood glucose homeostasis in young rats after oral administration. J Appl Toxicol 2020;40:1284-96. [DOI: 10.1002/jat.3985] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Notter T, Aengenheister L, Weber-Stadlbauer U, Naegeli H, Wick P, Meyer U, Buerki-Thurnherr T. Prenatal exposure to TiO2 nanoparticles in mice causes behavioral deficits with relevance to autism spectrum disorder and beyond. Transl Psychiatry 2018;8:193. [PMID: 30237468 DOI: 10.1038/s41398-018-0251-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
22 Morita K, Nishimura Y, Nakamura S, Arai Y, Numako C, Sato K, Nakayama M, Akasaka H, Sasaki R, Ogino C, Kondo A. Titanium oxide nano-radiosensitizers for hydrogen peroxide delivery into cancer cells. Colloids Surf B Biointerfaces 2021;198:111451. [PMID: 33223346 DOI: 10.1016/j.colsurfb.2020.111451] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Bischoff NS, de Kok TM, Sijm DTHM, van Breda SG, Briedé JJ, Castenmiller JJM, Opperhuizen A, Chirino YI, Dirven H, Gott D, Houdeau E, Oomen AG, Poulsen M, Rogler G, van Loveren H. Possible Adverse Effects of Food Additive E171 (Titanium Dioxide) Related to Particle Specific Human Toxicity, Including the Immune System. Int J Mol Sci 2020;22:E207. [PMID: 33379217 DOI: 10.3390/ijms22010207] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Vieira A, Vital N, Rolo D, Roque R, Gonçalves LM, Bettencourt A, Silva MJ, Louro H. Investigation of the genotoxicity of digested titanium dioxide nanomaterials in human intestinal cells. Food Chem Toxicol 2022;:112841. [PMID: 35093430 DOI: 10.1016/j.fct.2022.112841] [Reference Citation Analysis]
25 Dar GI, Saeed M, Wu A. Toxicity of TiO 2 Nanoparticles. In: Wu A, Ren W, editors. TiO2 Nanoparticles. Wiley; 2020. pp. 67-103. [DOI: 10.1002/9783527825431.ch2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
26 Ivanov M, Lyubartsev AP. Atomistic Molecular Dynamics Simulations of Lipids Near TiO2 Nanosurfaces. J Phys Chem B 2021;125:8048-59. [PMID: 34269053 DOI: 10.1021/acs.jpcb.1c04547] [Reference Citation Analysis]
27 Kazimirova A, El Yamani N, Rubio L, García-Rodríguez A, Barancokova M, Marcos R, Dusinska M. Effects of Titanium Dioxide Nanoparticles on the Hprt Gene Mutations in V79 Hamster Cells. Nanomaterials (Basel) 2020;10:E465. [PMID: 32150818 DOI: 10.3390/nano10030465] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
28 Dirisu JO, Oyedepo SO, Fayomi OSI, Joseph OO, Akinlabi ET, Babalola PO, Udoye NE, Ajayi OO, Aworinde AK, Banjo SO, Oluwasegun K. Thermal-emission assessment of building ceilings from agro-industrial wastes. Fuel Communications 2022;10:100042. [DOI: 10.1016/j.jfueco.2021.100042] [Reference Citation Analysis]
29 Lagopati N, Evangelou K, Falaras P, Tsilibary EC, Vasileiou PVS, Havaki S, Angelopoulou A, Pavlatou EA, Gorgoulis VG. Nanomedicine: Photo-activated nanostructured titanium dioxide, as a promising anticancer agent. Pharmacol Ther 2021;222:107795. [PMID: 33358928 DOI: 10.1016/j.pharmthera.2020.107795] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Yao L, Tang Y, Chen B, Hong W, Xu X, Liu Y, Aguilar ZP, Xu H. Oral exposure of titanium oxide nanoparticles induce ileum physical barrier dysfunction via Th1/Th2 imbalance. Environ Toxicol 2020;35:982-90. [PMID: 32333507 DOI: 10.1002/tox.22934] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
31 Akinola PO, Lateef A, Asafa TB, Beukes LS, Hakeem AS, Irshad HM. Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon 2020;6:e04610. [PMID: 32775756 DOI: 10.1016/j.heliyon.2020.e04610] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
32 Zhang Y, Mortimer M, Guo L. Interplay between engineered nanomaterials and microbiota. Environ Sci : Nano 2020;7:2454-85. [DOI: 10.1039/d0en00557f] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
33 Monteiro NR, Basting RT, Amaral FLBD, FranÇa FMG, Turssi CP, Gomes OP, Lisboa Filho PN, Kantovitz KR, Basting RT. Titanium dioxide nanotubes incorporated into bleaching agents: physicochemical characterization and enamel color change. J Appl Oral Sci 2020;28:e20190771. [PMID: 32609187 DOI: 10.1590/1678-7757-2019-0771] [Reference Citation Analysis]
34 Zhou H, Pandya JK, Tan Y, Liu J, Peng S, Muriel Mundo JL, He L, Xiao H, McClements DJ. Role of Mucin in Behavior of Food-Grade TiO2 Nanoparticles under Simulated Oral Conditions. J Agric Food Chem 2019;67:5882-90. [PMID: 31045357 DOI: 10.1021/acs.jafc.9b01732] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
35 Asmatulu E, Andalib MN, Subeshan B, Abedin F. Impact of nanomaterials on human health: a review. Environ Chem Lett. [DOI: 10.1007/s10311-022-01430-z] [Reference Citation Analysis]
36 Talamini L, Gimondi S, Violatto MB, Fiordaliso F, Pedica F, Tran NL, Sitia G, Aureli F, Raggi A, Nelissen I, Cubadda F, Bigini P, Diomede L. Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status. Nanotoxicology 2019;13:1087-101. [DOI: 10.1080/17435390.2019.1640910] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 8.0] [Reference Citation Analysis]
37 Chen Z, Han S, Zhou D, Zheng P, Zhou S, Jia G. Serum metabolomic signatures of Sprague-Dawley rats after oral administration of titanium dioxide nanoparticles. NanoImpact 2020;19:100236. [DOI: 10.1016/j.impact.2020.100236] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Baranowska-wójcik E, Szwajgier D, Winiarska-mieczan A. A review of research on the impact of E171/TiO2 NPs on the digestive tract. Journal of Trace Elements in Medicine and Biology 2022. [DOI: 10.1016/j.jtemb.2022.126988] [Reference Citation Analysis]
39 Pelclova D, Navratil T, Kacerova T, Zamostna B, Fenclova Z, Vlckova S, Kacer P. NanoTiO2 Sunscreen Does Not Prevent Systemic Oxidative Stress Caused by UV Radiation and a Minor Amount of NanoTiO2 is Absorbed in Humans. Nanomaterials (Basel) 2019;9:E888. [PMID: 31212919 DOI: 10.3390/nano9060888] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 4.7] [Reference Citation Analysis]
40 Jiang D, Ning F. Fused Filament Fabrication of Biodegradable PLA/316L Composite Scaffolds: Effects of Metal Particle Content. Procedia Manufacturing 2020;48:755-62. [DOI: 10.1016/j.promfg.2020.05.110] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
41 Zhang L, Haddouti EM, Welle K, Burger C, Kabir K, Schildberg FA. Local Cellular Responses to Metallic and Ceramic Nanoparticles from Orthopedic Joint Arthroplasty Implants. Int J Nanomedicine 2020;15:6705-20. [PMID: 32982228 DOI: 10.2147/IJN.S248848] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
42 Kim KT, Eo MY, Nguyen TTH, Kim SM. General review of titanium toxicity. Int J Implant Dent 2019;5:10. [PMID: 30854575 DOI: 10.1186/s40729-019-0162-x] [Cited by in Crossref: 78] [Cited by in F6Publishing: 48] [Article Influence: 26.0] [Reference Citation Analysis]
43 Savas HB, Gultekin F, Basak K, Aylak F, Doguc DK, Gurdal O. Salivary glands of fetuses are adversely affected by artificial food colorings in rats. Rev Assoc Med Bras (1992) 2021;67:287-91. [PMID: 34406255 DOI: 10.1590/1806-9282.67.02.20200749] [Reference Citation Analysis]
44 Marion-Letellier R, Amamou A, Savoye G, Ghosh S. Inflammatory Bowel Diseases and Food Additives: To Add Fuel on the Flames! Nutrients 2019;11:E1111. [PMID: 31109097 DOI: 10.3390/nu11051111] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
45 Zhou Y, Ji J, Chen C, Hong F. Retardation of Axonal and Dendritic Outgrowth Is Associated with the MAPK Signaling Pathway in Offspring Mice Following Maternal Exposure to Nanosized Titanium Dioxide. J Agric Food Chem 2019;67:2709-15. [PMID: 30701967 DOI: 10.1021/acs.jafc.8b06992] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
46 Saravanan M, Mostafavi E, Vincent S, Negash H, Andavar R, Perumal V, Chandra N, Narayanasamy S, Kalimuthu K, Barabadi H. Nanotechnology-based approaches for emerging and re-emerging viruses: Special emphasis on COVID-19. Microb Pathog 2021;156:104908. [PMID: 33932543 DOI: 10.1016/j.micpath.2021.104908] [Reference Citation Analysis]
47 Geiss O, Ponti J, Senaldi C, Bianchi I, Mehn D, Barrero J, Gilliland D, Matissek R, Anklam E. Characterisation of food grade titania with respect to nanoparticle content in pristine additives and in their related food products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020;37:239-53. [PMID: 31990642 DOI: 10.1080/19440049.2019.1695067] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
48 Zhang W, Rhim J. Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packaging and Shelf Life 2022;31:100806. [DOI: 10.1016/j.fpsl.2021.100806] [Reference Citation Analysis]
49 Aengenheister L, Dugershaw BB, Manser P, Wichser A, Schoenenberger R, Wick P, Hesler M, Kohl Y, Straskraba S, Suter MJ, Buerki-Thurnherr T. Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. Eur J Pharm Biopharm 2019;142:488-97. [PMID: 31330257 DOI: 10.1016/j.ejpb.2019.07.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
50 Chen Z, Zheng P, Han S, Zhang J, Li Z, Zhou S, Jia G. Tissue-specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats. Nanoscale 2020;12:20033-46. [PMID: 32996981 DOI: 10.1039/d0nr05591c] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
51 Coméra C, Cartier C, Gaultier E, Catrice O, Panouille Q, El Hamdi S, Tirez K, Nelissen I, Théodorou V, Houdeau E. Jejunal villus absorption and paracellular tight junction permeability are major routes for early intestinal uptake of food-grade TiO2 particles: an in vivo and ex vivo study in mice. Part Fibre Toxicol 2020;17:26. [PMID: 32527323 DOI: 10.1186/s12989-020-00357-z] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
52 Benbow NL, Rozenberga L, McQuillan AJ, Krasowska M, Beattie DA. ATR FTIR Study of the Interaction of TiO2 Nanoparticle Films with β-Lactoglobulin and Bile Salts. Langmuir 2021;37:13278-90. [PMID: 34731567 DOI: 10.1021/acs.langmuir.1c01830] [Reference Citation Analysis]
53 Gao Y, Ye Y, Wang J, Zhang H, Wu Y, Wang Y, Yan L, Zhang Y, Duan S, Lv L, Wang Y. Effects of titanium dioxide nanoparticles on nutrient absorption and metabolism in rats: distinguishing the susceptibility of amino acids, metal elements, and glucose. Nanotoxicology 2020;14:1301-23. [PMID: 32930049 DOI: 10.1080/17435390.2020.1817597] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
54 Carriere M, Arnal ME, Douki T. TiO2 genotoxicity: An update of the results published over the last six years. Mutat Res Genet Toxicol Environ Mutagen 2020;854-855:503198. [PMID: 32660822 DOI: 10.1016/j.mrgentox.2020.503198] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
55 Gangadoo S, Nguyen H, Rajapaksha P, Zreiqat H, Latham K, Cozzolino D, Chapman J, Truong VK. Inorganic nanoparticles as food additives and their influence on the human gut microbiota. Environ Sci : Nano 2021;8:1500-18. [DOI: 10.1039/d1en00025j] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
56 Chen ZJ, Han S, Zheng P, Zhou SP, Jia G. [Effect of subchronic combined oral exposure of titanium dioxide nanoparticles and glucose on levels of serum folate and vitamin B12 in young SD rats]. Beijing Da Xue Xue Bao Yi Xue Ban 2020;52:451-6. [PMID: 32541977 DOI: 10.19723/j.issn.1671-167X.2020.03.009] [Reference Citation Analysis]
57 Barkhade T, Mahapatra SK, Banerjee I. Study of mitochondrial swelling, membrane fluidity and ROS production induced by nano-TiO2 and prevented by Fe incorporation. Toxicol Res (Camb) 2019;8:711-22. [PMID: 31588348 DOI: 10.1039/c9tx00143c] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
58 Jarmakiewicz-Czaja S, Sokal A, Tabarkiewicz J, Filip R. TiO2 - do we have to worry about it? One of the important aetiological factors in inflammatory bowel disease. Prz Gastroenterol 2021;6:106-10. [PMID: 34276836 DOI: 10.5114/pg.2021.106660] [Reference Citation Analysis]
59 Margarucci LM, Gianfranceschi G, Romano Spica V, D'Ermo G, Refi C, Podico M, Vitali M, Romano F, Valeriani F. Photocatalytic Treatments for Personal Protective Equipment: Experimental Microbiological Investigations and Perspectives for the Enhancement of Antimicrobial Activity by Micrometric TiO2. Int J Environ Res Public Health 2021;18:8662. [PMID: 34444411 DOI: 10.3390/ijerph18168662] [Reference Citation Analysis]
60 Chen Z, Han S, Zhang J, Zheng P, Liu X, Zhang Y, Jia G. Exploring urine biomarkers of early health effects for occupational exposure to titanium dioxide nanoparticles using metabolomics. Nanoscale 2021;13:4122-32. [PMID: 33570056 DOI: 10.1039/d0nr08792k] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Mohamadzadeh N, Zirak Javanmard M, Karimipour M, Farjah G. Developmental Toxicity of the Neural Tube Induced by Titanium Dioxide Nanoparticles in Mouse Embryos. Avicenna J Med Biotechnol 2021;13:74-80. [PMID: 34012522 DOI: 10.18502/ajmb.v13i2.5524] [Reference Citation Analysis]
62 Hwang JS, Yu J, Kim HM, Oh JM, Choi SJ. Food Additive Titanium Dioxide and Its Fate in Commercial Foods. Nanomaterials (Basel) 2019;9:E1175. [PMID: 31426388 DOI: 10.3390/nano9081175] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
63 Khalid A, Ahmad P, Alharthi AI, Muhammad S, Khandaker MU, Iqbal Faruque MR, Din IU, Alotaibi MA. Unmodified Titanium Dioxide Nanoparticles as a Potential Contrast Agent in Photon Emission Computed Tomography. Crystals 2021;11:171. [DOI: 10.3390/cryst11020171] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 10.0] [Reference Citation Analysis]
64 Shukla BK, Tyagi H, Bhandari H, Garg S. Nanotechnology-Based Approach to Combat Pandemic COVID 19: A Review. Macromol Symp 2021;397:2000336. [PMID: 34511843 DOI: 10.1002/masy.202000336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Palugan L, Spoldi M, Rizzuto F, Guerra N, Uboldi M, Cerea M, Moutaharrik S, Melocchi A, Gazzaniga A, Zema L. What's next in the use of opacifiers for cosmetic coatings of solid dosage forms? Insights on current titanium dioxide alternatives. Int J Pharm 2022;616:121550. [PMID: 35131353 DOI: 10.1016/j.ijpharm.2022.121550] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Lu W, Nishinari K, Phillips GO, Fang Y. Colloidal nutrition science to understand food-body interaction. Trends in Food Science & Technology 2021;109:352-64. [DOI: 10.1016/j.tifs.2021.01.037] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Huang Y, Mei L, Chen X, Wang Q. Recent Developments in Food Packaging Based on Nanomaterials. Nanomaterials (Basel) 2018;8:E830. [PMID: 30322162 DOI: 10.3390/nano8100830] [Cited by in Crossref: 76] [Cited by in F6Publishing: 36] [Article Influence: 19.0] [Reference Citation Analysis]
68 Chen Z, Han S, Zhang J, Zheng P, Liu X, Zhang Y, Jia G. Metabolomics screening of serum biomarkers for occupational exposure of titanium dioxide nanoparticles. Nanotoxicology 2021;15:832-49. [PMID: 33961536 DOI: 10.1080/17435390.2021.1921872] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
69 Li Q, Duan M, Liu L, Chen X, Fu Y, Li J, Zhao T, McClements DJ. Impact of Polyphenol Interactions with Titanium Dioxide Nanoparticles on Their Bioavailability and Antioxidant Activity. J Agric Food Chem 2021;69:9661-70. [PMID: 34376052 DOI: 10.1021/acs.jafc.1c01970] [Reference Citation Analysis]
70 Li Q, Liu L, Duan M, Chen X, Li J, Zhao T, Fu Y, Julian McClements D, Huang J, Lin H, Shi J. TiO2 nanoparticles negatively impact the bioavailability and antioxidant activity of tea polyphenols. Food Chem 2022;371:131045. [PMID: 34600371 DOI: 10.1016/j.foodchem.2021.131045] [Reference Citation Analysis]
71 Demir E. An in vivo study of nanorod, nanosphere, and nanowire forms of titanium dioxide using Drosophila melanogaster : toxicity, cellular uptake, oxidative stress, and DNA damage. Journal of Toxicology and Environmental Health, Part A 2020;83:456-69. [DOI: 10.1080/15287394.2020.1777236] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
72 Kerry RG, Malik S, Redda YT, Sahoo S, Patra JK, Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomedicine 2019;18:196-220. [PMID: 30904587 DOI: 10.1016/j.nano.2019.03.004] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 16.0] [Reference Citation Analysis]
73 Arora B, Yoon A, Sriram M, Singha P, Rizvi SS. Reactive extrusion: A review of the physicochemical changes in food systems. Innovative Food Science & Emerging Technologies 2020;64:102429. [DOI: 10.1016/j.ifset.2020.102429] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
74 Hashem MM, Abo-El-Sooud K, Abd-Elhakim YM, Badr YA, El-Metwally AE, Bahy-El-Dien A. The long-term oral exposure to titanium dioxide impaired immune functions and triggered cytotoxic and genotoxic impacts in rats. J Trace Elem Med Biol 2020;60:126473. [PMID: 32142956 DOI: 10.1016/j.jtemb.2020.126473] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
75 Sun F, Wang X, Zhang P, Chen Z, Guo Z, Shang X. Reproductive toxicity investigation of silica nanoparticles in male pubertal mice. Environ Sci Pollut Res Int 2022;29:36640-54. [PMID: 35064498 DOI: 10.1007/s11356-021-18215-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Gueche YA, Sanchez-Ballester NM, Cailleaux S, Bataille B, Soulairol I. Selective Laser Sintering (SLS), a New Chapter in the Production of Solid Oral Forms (SOFs) by 3D Printing. Pharmaceutics 2021;13:1212. [PMID: 34452173 DOI: 10.3390/pharmaceutics13081212] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
77 Li Q, Li J, Duan M, Liu L, Fu Y, Mcclements DJ, Zhao T, Lin H, Shi J, Chen X. Impact of food additive titanium dioxide on the polyphenol content and antioxidant activity of the apple juice. LWT 2022;154:112574. [DOI: 10.1016/j.lwt.2021.112574] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
78 Blevins LK, Crawford RB, Bach A, Rizzo MD, Zhou J, Henriquez JE, Khan DMIO, Sermet S, Arnold LL, Pennington KL, Souza NP, Cohen SM, Kaminski NE. Evaluation of immunologic and intestinal effects in rats administered an E 171-containing diet, a food grade titanium dioxide (TiO2). Food Chem Toxicol. 2019;133:110793. [PMID: 31473338 DOI: 10.1016/j.fct.2019.110793] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
79 Pedata P, Ricci G, Malorni L, Venezia A, Cammarota M, Volpe MG, Iannaccone N, Guida V, Schiraldi C, Romano M, Iacomino G. In vitro intestinal epithelium responses to titanium dioxide nanoparticles. Food Res Int 2019;119:634-42. [PMID: 30884698 DOI: 10.1016/j.foodres.2018.10.041] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
80 Kolling J, Tigges J, Hellack B, Albrecht C, Schins RPF. Evaluation of the NLRP3 Inflammasome Activating Effects of a Large Panel of TiO2 Nanomaterials in Macrophages. Nanomaterials (Basel) 2020;10:E1876. [PMID: 32961672 DOI: 10.3390/nano10091876] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]