BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Winkler HC, Suter M, Naegeli H. Critical review of the safety assessment of nano-structured silica additives in food. J Nanobiotechnology 2016;14:44. [PMID: 27287345 DOI: 10.1186/s12951-016-0189-6] [Cited by in Crossref: 63] [Cited by in F6Publishing: 54] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Sun T, Kang Y, Liu J, Zhang Y, Ou L, Liu X, Lai R, Shao L. Nanomaterials and hepatic disease: toxicokinetics, disease types, intrinsic mechanisms, liver susceptibility, and influencing factors. J Nanobiotechnology 2021;19:108. [PMID: 33863340 DOI: 10.1186/s12951-021-00843-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Varlamova EG, Turovsky EA, Blinova EV. Therapeutic Potential and Main Methods of Obtaining Selenium Nanoparticles. Int J Mol Sci 2021;22:10808. [PMID: 34639150 DOI: 10.3390/ijms221910808] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Olejnik M, Breisch M, Sokolova V, Loza K, Prymak O, Rosenkranz N, Westphal G, Bünger J, Köller M, Sengstock C, Epple M. The effect of short silica fibers (0.3 μm 3.2 μm) on macrophages. Sci Total Environ 2021;769:144575. [PMID: 33486165 DOI: 10.1016/j.scitotenv.2020.144575] [Reference Citation Analysis]
4 Ma R, Qi Y, Zhao X, Li X, Sun X, Niu P, Li Y, Guo C, Chen R, Sun Z. Amorphous silica nanoparticles accelerated atherosclerotic lesion progression in ApoE-/- mice through endoplasmic reticulum stress-mediated CD36 up-regulation in macrophage. Part Fibre Toxicol 2020;17:50. [PMID: 33008402 DOI: 10.1186/s12989-020-00380-0] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
5 Christen V, Fent K. Silica nanoparticles induce endoplasmic reticulum stress response and activate mitogen activated kinase (MAPK) signalling. Toxicol Rep 2016;3:832-40. [PMID: 28959611 DOI: 10.1016/j.toxrep.2016.10.009] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
6 Liao G, Ma H, Li Y, Sheng Y, Chen C. Selenium nanoparticles inhibit tumor metastasis in prostate cancer through upregulated miR-155-5p-related pathway. Biosci Biotechnol Biochem 2021;85:287-96. [PMID: 33604641 DOI: 10.1093/bbb/zbaa089] [Reference Citation Analysis]
7 Murugadoss S, Lison D, Godderis L, Van Den Brule S, Mast J, Brassinne F, Sebaihi N, Hoet PH. Toxicology of silica nanoparticles: an update. Arch Toxicol 2017;91:2967-3010. [PMID: 28573455 DOI: 10.1007/s00204-017-1993-y] [Cited by in Crossref: 191] [Cited by in F6Publishing: 165] [Article Influence: 38.2] [Reference Citation Analysis]
8 Heal RD, Hasan NA, Haque MM. Increasing disease burden and use of drugs and chemicals in Bangladesh shrimp aquaculture: A potential menace to human health. Mar Pollut Bull 2021;172:112796. [PMID: 34385024 DOI: 10.1016/j.marpolbul.2021.112796] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Malakar A, Kanel SR, Ray C, Snow DD, Nadagouda MN. Nanomaterials in the environment, human exposure pathway, and health effects: A review. Sci Total Environ 2021;759:143470. [PMID: 33248790 DOI: 10.1016/j.scitotenv.2020.143470] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
10 Alandiyjany MN, Kishawy AT, Abdelfattah-hassan A, Eldoumani H, Elazab ST, El-mandrawy SA, Saleh AA, Elsawy NA, Attia YA, Arisha AH, Ibrahim D. Nano-silica and magnetized-silica mitigated lead toxicity: Their efficacy on bioaccumulation risk, performance, and apoptotic targeted genes in Nile tilapia (Oreochromis niloticus). Aquatic Toxicology 2022;242:106054. [DOI: 10.1016/j.aquatox.2021.106054] [Reference Citation Analysis]
11 Susnik E, Taladriz-Blanco P, Drasler B, Balog S, Petri-Fink A, Rothen-Rutishauser B. Increased Uptake of Silica Nanoparticles in Inflamed Macrophages but Not upon Co-Exposure to Micron-Sized Particles. Cells 2020;9:E2099. [PMID: 32942641 DOI: 10.3390/cells9092099] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Li L, Gao Y, Zhang W, Zheng Y. Antitumor Potential of Selenium Nanoparticles (SeNPs) Against Multiple Myeloma Model in RPMI8226 Cells. J Clust Sci. [DOI: 10.1007/s10876-021-02191-5] [Reference Citation Analysis]
13 Leibe R, Hsiao I, Fritsch-decker S, Kielmeier U, Wagbo AM, Voss B, Schmidt A, Hessman SD, Duschl A, Oostingh GJ, Diabaté S, Weiss C. The protein corona suppresses the cytotoxic and pro-inflammatory response in lung epithelial cells and macrophages upon exposure to nanosilica. Arch Toxicol 2019;93:871-85. [DOI: 10.1007/s00204-019-02422-9] [Cited by in Crossref: 23] [Cited by in F6Publishing: 21] [Article Influence: 7.7] [Reference Citation Analysis]
14 Brand W, van Kesteren PCE, Peters RJB, Oomen AG. Issues currently complicating the risk assessment of synthetic amorphous silica (SAS) nanoparticles after oral exposure. Nanotoxicology 2021;15:905-33. [PMID: 34074217 DOI: 10.1080/17435390.2021.1931724] [Reference Citation Analysis]
15 Zhang L, Wu X, Feng Y, Zheng L, Jian J. Selenium donors inhibits osteoclastogenesis through inhibiting IL-6 and plays a pivotal role in bone metastasis from breast cancer. Toxicol Res (Camb) 2020;9:544-51. [PMID: 32905216 DOI: 10.1093/toxres/tfaa053] [Reference Citation Analysis]
16 Shim JS, Shim SY, Cha HJ, Kim J, Kim HC. Socioeconomic Characteristics and Trends in the Consumption of Ultra-Processed Foods in Korea from 2010 to 2018. Nutrients 2021;13:1120. [PMID: 33805412 DOI: 10.3390/nu13041120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Li Y, Jiang K, Cao H, Yuan M, Ye T, Xu F. Establishment of a standardized dietary model for nanoparticles oral exposure studies. Food Sci Nutr 2021;9:1441-51. [PMID: 33747458 DOI: 10.1002/fsn3.2112] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Cui X, Bao L, Wang X, Chen C. The Nano–Intestine Interaction: Understanding the Location‐Oriented Effects of Engineered Nanomaterials in the Intestine. Small 2020;16:1907665. [DOI: 10.1002/smll.201907665] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
19 Lim JP, Baeg GH, Srinivasan DK, Dheen ST, Bay BH. Potential adverse effects of engineered nanomaterials commonly used in food on the miRNome. Food Chem Toxicol 2017;109:771-9. [PMID: 28720288 DOI: 10.1016/j.fct.2017.07.030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
20 Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021;:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Reference Citation Analysis]
21 Lu X, Li J, Lou H, Cao Z, Fan X. Genome-Wide DNA Methylation Alterations and Potential Risk Induced by Subacute and Subchronic Exposure to Food-Grade Nanosilica in Mice. ACS Nano 2021;15:8225-43. [PMID: 33938728 DOI: 10.1021/acsnano.0c07323] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Lee KI, Su CC, Fang KM, Wu CC, Wu CT, Chen YW. Ultrafine silicon dioxide nanoparticles cause lung epithelial cells apoptosis via oxidative stress-activated PI3K/Akt-mediated mitochondria- and endoplasmic reticulum stress-dependent signaling pathways. Sci Rep 2020;10:9928. [PMID: 32555254 DOI: 10.1038/s41598-020-66644-z] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
23 Liang X, Wang Y, Cheng J, Ji Q, Wang Y, Wu T, Tang M. Mesoporous Silica Nanoparticles at Predicted Environmentally Relevant Concentrations Cause Impairments in GABAergic Motor Neurons of Nematode Caenorhabditis elegans. Chem Res Toxicol 2020;33:1665-76. [PMID: 32510209 DOI: 10.1021/acs.chemrestox.9b00477] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Morifuji N, Nakashima S. Hydrothermal Transformation of Inorganic and Biogenic Silica as Studied Using in Situ Hydrothermal Infrared Microspectroscopy. Appl Spectrosc 2018;72:1487-97. [DOI: 10.1177/0003702818771817] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Boon P, Chrysafidis D, Gürtler R, Mosesso P, Parent-Massin D, Tobback P, Kovalkovicova N, Rincon AM, Tard A, Lambré C; EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS). Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J 2018;16:e05088. [PMID: 32625658 DOI: 10.2903/j.efsa.2018.5088] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
26 Luo H, Zhou Z, Li G, Li W, Li Z, Xiong G, Zhu Y, Yao F, Guo R, Wan Y. Morphology and cell responses of three-dimensional porous silica nanofibrous scaffold prepared by sacrificial template method. Journal of Non-Crystalline Solids 2017;457:145-51. [DOI: 10.1016/j.jnoncrysol.2016.11.039] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
27 De Matteis V. Exposure to Inorganic Nanoparticles: Routes of Entry, Immune Response, Biodistribution and In Vitro/In Vivo Toxicity Evaluation. Toxics 2017;5:E29. [PMID: 29051461 DOI: 10.3390/toxics5040029] [Cited by in Crossref: 97] [Cited by in F6Publishing: 69] [Article Influence: 19.4] [Reference Citation Analysis]
28 Iftikhar M, Noureen A, Uzair M, Jabeen F, Abdel Daim M, Cappello T. Perspectives of Nanoparticles in Male Infertility: Evidence for Induced Abnormalities in Sperm Production. Int J Environ Res Public Health 2021;18:1758. [PMID: 33670275 DOI: 10.3390/ijerph18041758] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
29 Retamal Marín RR, Babick F, Lindner GG, Wiemann M, Stintz M. Effects of Sample Preparation on Particle Size Distributions of Different Types of Silica in Suspensions. Nanomaterials (Basel) 2018;8:E454. [PMID: 29933581 DOI: 10.3390/nano8070454] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
30 Santos J, Jimenez M, Calero N, Alfaro M, Muñoz J. Influence of a shear post-treatment on rheological properties, microstructure and physical stability of emulgels formed by rosemary essential oil and a fumed silica. Journal of Food Engineering 2019;241:136-48. [DOI: 10.1016/j.jfoodeng.2018.08.013] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
31 Santos J, Calero N, García-capitán J, Muñoz J. Preparation and characterization of emulgels loaded with sweet fennel oil. Journal of Dispersion Science and Technology 2020;41:1381-9. [DOI: 10.1080/01932691.2019.1623688] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
32 Agrawal G, Samal SK, Sethi SK, Manik G, Agrawal R. Microgel/silica hybrid colloids: Bioinspired synthesis and controlled release application. Polymer 2019;178:121599. [DOI: 10.1016/j.polymer.2019.121599] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 6.7] [Reference Citation Analysis]
33 Phue WH, Liu M, Xu K, Srinivasan D, Ismail A, George S. A Comparative Analysis of Different Grades of Silica Particles and Temperature Variants of Food-Grade Silica Nanoparticles for Their Physicochemical Properties and Effect on Trypsin. J Agric Food Chem 2019;67:12264-72. [DOI: 10.1021/acs.jafc.9b03638] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
34 Lin Y, Hu C, Chen A, Feng X, Liang H, Yin S, Zhang G, Shao L. Neurotoxicity of nanoparticles entering the brain via sensory nerve-to-brain pathways: injuries and mechanisms. Arch Toxicol 2020;94:1479-95. [DOI: 10.1007/s00204-020-02701-w] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
35 Wittig A, Gehrke H, Del Favero G, Fritz EM, Al-Rawi M, Diabaté S, Weiss C, Sami H, Ogris M, Marko D. Amorphous Silica Particles Relevant in Food Industry Influence Cellular Growth and Associated Signaling Pathways in Human Gastric Carcinoma Cells. Nanomaterials (Basel) 2017;7:E18. [PMID: 28336852 DOI: 10.3390/nano7010018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
36 Winkler HC, Kornprobst J, Wick P, von Moos LM, Trantakis I, Schraner EM, Bathke B, Hochrein H, Suter M, Naegeli H. MyD88-dependent pro-interleukin-1β induction in dendritic cells exposed to food-grade synthetic amorphous silica. Part Fibre Toxicol 2017;14:21. [PMID: 28645296 DOI: 10.1186/s12989-017-0202-8] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.8] [Reference Citation Analysis]
37 Juère E, Del Favero G, Masse F, Marko D, Popat A, Florek J, Caillard R, Kleitz F. Gastro-protective protein-silica nanoparticles formulation for oral drug delivery: In vitro release, cytotoxicity and mitochondrial activity. European Journal of Pharmaceutics and Biopharmaceutics 2020;151:171-80. [DOI: 10.1016/j.ejpb.2020.03.015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
38 Hao Y, Hu J, Wang H, Wang C. Gold nanoparticles regulate the antitumor secretome and have potent cytotoxic effects against prostate cancer cells. J Appl Toxicol 2021;41:1286-303. [PMID: 33355407 DOI: 10.1002/jat.4117] [Reference Citation Analysis]
39 Mebert AM, Baglole CJ, Desimone MF, Maysinger D. Nanoengineered silica: Properties, applications and toxicity. Food and Chemical Toxicology 2017;109:753-70. [DOI: 10.1016/j.fct.2017.05.054] [Cited by in Crossref: 59] [Cited by in F6Publishing: 48] [Article Influence: 11.8] [Reference Citation Analysis]
40 Del Favero G, Kraegeloh A. Integrating Biophysics in Toxicology. Cells 2020;9:E1282. [PMID: 32455794 DOI: 10.3390/cells9051282] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
41 Boudard D, Aureli F, Laurent B, Sturm N, Raggi A, Antier E, Lakhdar L, Marche PN, Cottier M, Cubadda F, Bencsik A. Chronic Oral Exposure to Synthetic Amorphous Silica (NM-200) Results in Renal and Liver Lesions in Mice. Kidney Int Rep 2019;4:1463-71. [PMID: 31701056 DOI: 10.1016/j.ekir.2019.06.007] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
42 Feray A, Guillet E, Szely N, Hullo M, Legrand FX, Brun E, Rabilloud T, Pallardy M, Biola-Vidamment A. Synthetic amorphous silica nanoparticles promote human dendritic cell maturation and CD4 + T-lymphocyte activation. Toxicol Sci 2021:kfab120. [PMID: 34633463 DOI: 10.1093/toxsci/kfab120] [Reference Citation Analysis]
43 Wiemann M, Vennemann A, Stintz M, Retamal Marín RR, Babick F, Lindner GG, Schuster TB, Brinkmann U, Krueger N. Effects of Ultrasonic Dispersion Energy on the Preparation of Amorphous SiO₂ Nanomaterials for In Vitro Toxicity Testing. Nanomaterials (Basel) 2018;9:E11. [PMID: 30583541 DOI: 10.3390/nano9010011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
44 Xu B, Zhang Q, Luo X, Ning X, Luo J, Guo J, Liu Q, Ling G, Zhou N. Selenium nanoparticles reduce glucose metabolism and promote apoptosis of glioma cells through reactive oxygen species-dependent manner. Neuroreport 2020;31:226-34. [PMID: 31876687 DOI: 10.1097/WNR.0000000000001386] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
45 Naidoo L, Suvardhan K, Sabela MI, Bisetty K. Multivariate optimization of field-flow fractionation of nanoscale synthetic amorphous silica in processed foods supported by computational modelling. New J Chem 2020;44:17542-51. [DOI: 10.1039/d0nj03215h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Mohammadi P, Abbasinia M, Assari MJ, Oliaei M. The Toxicology of Silica Nanoparticles: A Review. Toxicological & Environmental Chemistry 2018;100:285-316. [DOI: 10.1080/02772248.2018.1485921] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
47 Javed I, Cui X, Wang X, Mortimer M, Andrikopoulos N, Li Y, Davis TP, Zhao Y, Ke PC, Chen C. Implications of the Human Gut-Brain and Gut-Cancer Axes for Future Nanomedicine. ACS Nano 2020;14:14391-416. [PMID: 33138351 DOI: 10.1021/acsnano.0c07258] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
48 Deng J, Ding QM, Jia MX, Li W, Zuberi Z, Wang JH, Ren JL, Fu D, Zeng XX, Luo JF. Biosafety risk assessment of nanoparticles: Evidence from food case studies. Environ Pollut 2021;275:116662. [PMID: 33582638 DOI: 10.1016/j.envpol.2021.116662] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
49 Guillard A, Gaultier E, Cartier C, Devoille L, Noireaux J, Chevalier L, Morin M, Grandin F, Lacroix MZ, Coméra C, Cazanave A, de Place A, Gayrard V, Bach V, Chardon K, Bekhti N, Adel-Patient K, Vayssière C, Fisicaro P, Feltin N, de la Farge F, Picard-Hagen N, Lamas B, Houdeau E. Basal Ti level in the human placenta and meconium and evidence of a materno-foetal transfer of food-grade TiO2 nanoparticles in an ex vivo placental perfusion model. Part Fibre Toxicol 2020;17:51. [PMID: 33023621 DOI: 10.1186/s12989-020-00381-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
50 Trujillo‐cayado LA, Santos J, Calero N, Alfaro‐rodríguez M, Muñoz J. Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil. J Sci Food Agric 2020;100:1671-7. [DOI: 10.1002/jsfa.10181] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
51 Azimipour S, Ghaedi S, Mehrabi Z, Ghasemzadeh SA, Heshmati M, Barikrow N, Attar F, Falahati M. Heme degradation and iron release of hemoglobin and oxidative stress of lymphocyte cells in the presence of silica nanoparticles. International Journal of Biological Macromolecules 2018;118:800-7. [DOI: 10.1016/j.ijbiomac.2018.06.128] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
52 Fytianos G, Rahdar A, Kyzas GZ. Nanomaterials in Cosmetics: Recent Updates. Nanomaterials (Basel) 2020;10:E979. [PMID: 32443655 DOI: 10.3390/nano10050979] [Cited by in Crossref: 34] [Cited by in F6Publishing: 20] [Article Influence: 17.0] [Reference Citation Analysis]
53 Cummins C, Lundy R, Walsh JJ, Ponsinet V, Fleury G, Morris MA. Enabling future nanomanufacturing through block copolymer self-assembly: A review. Nano Today 2020;35:100936. [DOI: 10.1016/j.nantod.2020.100936] [Cited by in Crossref: 31] [Cited by in F6Publishing: 9] [Article Influence: 15.5] [Reference Citation Analysis]
54 Sothornvit R. Nanostructured materials for food packaging systems: new functional properties. Current Opinion in Food Science 2019;25:82-7. [DOI: 10.1016/j.cofs.2019.03.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 2] [Article Influence: 5.3] [Reference Citation Analysis]
55 Santos J, Alfaro MC, Trujillo-cayado LA, Calero N, Muñoz J. Encapsulation of β-carotene in emulgels-based delivery systems formulated with sweet fennel oil. LWT 2019;100:189-95. [DOI: 10.1016/j.lwt.2018.10.057] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
56 Doherty A, Wall A, Khaldi N, Kussmann M. Artificial Intelligence in Functional Food Ingredient Discovery and Characterisation: A Focus on Bioactive Plant and Food Peptides. Front Genet 2021;12:768979. [PMID: 34868255 DOI: 10.3389/fgene.2021.768979] [Reference Citation Analysis]
57 Fritsch-Decker S, An Z, Yan J, Hansjosten I, Al-Rawi M, Peravali R, Diabaté S, Weiss C. Silica Nanoparticles Provoke Cell Death Independent of p53 and BAX in Human Colon Cancer Cells. Nanomaterials (Basel) 2019;9:E1172. [PMID: 31426331 DOI: 10.3390/nano9081172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
58 Tian B, Liu Y. Antibacterial applications and safety issues of silica‐based materials: A review. Int J Appl Ceram Technol 2021;18:289-301. [DOI: 10.1111/ijac.13641] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
59 Wiemann M, Vennemann A, Venzago C, Lindner GG, Schuster TB, Krueger N. Serum Lowers Bioactivity and Uptake of Synthetic Amorphous Silica by Alveolar Macrophages in a Particle Specific Manner. Nanomaterials (Basel) 2021;11:628. [PMID: 33802450 DOI: 10.3390/nano11030628] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Liao G, Tang J, Wang D, Zuo H, Zhang Q, Liu Y, Xiong H. Selenium nanoparticles (SeNPs) have potent antitumor activity against prostate cancer cells through the upregulation of miR-16. World J Surg Oncol 2020;18:81. [PMID: 32357938 DOI: 10.1186/s12957-020-01850-7] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]