BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu Y, An X, Zhang X, Qiao Y, Zheng T, Li X. STING: a master regulator in the cancer-immunity cycle. Mol Cancer 2019;18:152. [PMID: 31679519 DOI: 10.1186/s12943-019-1087-y] [Cited by in Crossref: 59] [Cited by in F6Publishing: 92] [Article Influence: 19.7] [Reference Citation Analysis]
Number Citing Articles
1 Shen M, Chen C, Guo Q, Wang Q, Liao J, Wang L, Yu J, Xue M, Duan Y, Zhang J. Systemic Delivery of mPEG‐Masked Trispecific T‐Cell Nanoengagers in Synergy with STING Agonists Overcomes Immunotherapy Resistance in TNBC and Generates a Vaccination Effect. Advanced Science. [DOI: 10.1002/advs.202203523] [Reference Citation Analysis]
2 Du M, Han L, Shen P, Wu D, Tu S, Shi Z. Long Noncoding RNA LINC02249 Is a Prognostic Biomarker and Correlates with Immunosuppressive Microenvironment in Skin Cutaneous Melanoma. Journal of Oncology 2022;2022:1-12. [DOI: 10.1155/2022/2054901] [Reference Citation Analysis]
3 Wang D, Nie T, Huang C, Chen Z, Ma X, Fang W, Huang Y, Luo L, Xiao Z. Metal-Cyclic Dinucleotide Nanomodulator-Stimulated STING Signaling for Strengthened Radioimmunotherapy of Large Tumor. Small 2022;:e2203227. [PMID: 36026551 DOI: 10.1002/smll.202203227] [Reference Citation Analysis]
4 You Z, Lv M, He X, Pan Y, Ge J, Hu X, Zheng Y, Huang M, Zhou C, You C. Homologous recombination repair gene mutations as a predictive biomarker for immunotherapy in patients with advanced melanoma. Front Immunol 2022;13:871756. [DOI: 10.3389/fimmu.2022.871756] [Reference Citation Analysis]
5 Shi Y, Xie T, Wang B, Wang R, Cai Y, Yuan B, Gleber-Netto FO, Tian X, Rodriguez-Rosario AE, Osman AA, Wang J, Pickering CR, Ren X, Sikora AG, Myers JN, Rangel R. Mutant p53 drives an immune cold tumor immune microenvironment in oral squamous cell carcinoma. Commun Biol 2022;5:757. [PMID: 35902768 DOI: 10.1038/s42003-022-03675-4] [Reference Citation Analysis]
6 Mekers VE, Kho VM, Ansems M, Adema GJ. cGAS/cGAMP/STING signal propagation in the tumor microenvironment: key role for myeloid cells in antitumor immunity. Radiother Oncol 2022:S0167-8140(22)04210-4. [PMID: 35870728 DOI: 10.1016/j.radonc.2022.07.014] [Reference Citation Analysis]
7 Luo K, Li N, Ye W, Gao H, Luo X, Cheng B. Activation of Stimulation of Interferon Genes (STING) Signal and Cancer Immunotherapy. Molecules 2022;27:4638. [DOI: 10.3390/molecules27144638] [Reference Citation Analysis]
8 Sun Q, Wei X, Wang Z, Zhu Y, Zhao W, Dong Y. Primary and Acquired Resistance against Immune Check Inhibitors in Non-Small Cell Lung Cancer. Cancers 2022;14:3294. [DOI: 10.3390/cancers14143294] [Reference Citation Analysis]
9 Alam M, Ansari MM, Noor S, Mohammad T, Hasan GM, Kazim SN, Hassan MI. Therapeutic targeting of TANK-binding kinase signaling towards anticancer drug development: Challenges and opportunities. Int J Biol Macromol 2022;207:1022-37. [PMID: 35358582 DOI: 10.1016/j.ijbiomac.2022.03.157] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Feng Z, Zang C, Zhang L, Yin S, Zhuang Q, Wang X. STING activation promotes inflammatory response and delays skin wound healing in diabetic mice. Biochem Biophys Res Commun 2022;611:126-31. [PMID: 35487062 DOI: 10.1016/j.bbrc.2022.04.085] [Reference Citation Analysis]
11 Dai W, Zhang J, Li S, He F, Liu Q, Gong J, Yang Z, Gong Y, Tang F, Wang Z, Xie C. Protein Arginine Methylation: An Emerging Modification in Cancer Immunity and Immunotherapy. Front Immunol 2022;13:865964. [DOI: 10.3389/fimmu.2022.865964] [Reference Citation Analysis]
12 Jeon MJ, Lee H, Lee J, Baek SY, Lee D, Jo S, Lee JY, Kang M, Jung HR, Han SB, Kim NJ, Lee S, Kim H. Development of Potent Immune Modulators Targeting Stimulator of Interferon Genes Receptor. J Med Chem 2022. [PMID: 35315650 DOI: 10.1021/acs.jmedchem.1c01795] [Reference Citation Analysis]
13 Huang JL, Chang YT, Hong ZY, Lin CS. Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy. Int J Mol Sci 2022;23:3238. [PMID: 35328658 DOI: 10.3390/ijms23063238] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
14 Chen T, Tongpeng S, Lu Z, Topatana W, Juengpanich S, Li S, Hu J, Cao J, Lee C, Tian Y, Chen M, Cai X. DNA damage response inhibition‐based combination therapies in cancer treatment: Recent advances and future directions. Aging and Cancer 2022;3:44-67. [DOI: 10.1002/aac2.12047] [Reference Citation Analysis]
15 Wang Z, Lu C, Zhang K, Lin C, Wu F, Tang X, Wu D, Dou Y, Han R, Wang Y, Hou C, Ouyang Q, Feng M, He Y, Li L. Metformin Combining PD-1 Inhibitor Enhanced Anti-Tumor Efficacy in STK11 Mutant Lung Cancer Through AXIN-1-Dependent Inhibition of STING Ubiquitination. Front Mol Biosci 2022;9:780200. [DOI: 10.3389/fmolb.2022.780200] [Reference Citation Analysis]
16 Vieira RS, Nascimento MS, Noronha IH, Vasconcelos JRC, Benvenuti LA, Barber GN, Câmara NOS, Kalil J, Cunha-Neto E, Almeida RR. STING Signaling Drives Production of Innate Cytokines, Generation of CD8+ T Cells and Enhanced Protection Against Trypanosoma cruzi Infection. Front Immunol 2021;12:775346. [PMID: 35095849 DOI: 10.3389/fimmu.2021.775346] [Reference Citation Analysis]
17 Carlsen L, Huntington KE, El-deiry WS. Immunotherapy for Colorectal Cancer: Mechanisms and Predictive Biomarkers. Cancers 2022;14:1028. [DOI: 10.3390/cancers14041028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
18 Singh AK, Praharaj M, Lombardo KA, Yoshida T, Matoso A, Baras AS, Zhao L, Srikrishna G, Huang J, Prasad P, Powell JD, Kates M, McConkey D, Pardoll DM, Bishai WR, Bivalacqua TJ. Re-engineered BCG overexpressing cyclic di-AMP augments trained immunity and exhibits improved efficacy against bladder cancer. Nat Commun 2022;13:878. [PMID: 35169141 DOI: 10.1038/s41467-022-28509-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
19 Wang Y, Chen‐mayfield T, Li Z, Younis MH, Cai W, Hu Q. Harnessing DNA for Immunotherapy: Cancer, Infectious Diseases, and Beyond. Adv Funct Materials. [DOI: 10.1002/adfm.202112273] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Garland KM, Sheehy TL, Wilson JT. Chemical and Biomolecular Strategies for STING Pathway Activation in Cancer Immunotherapy. Chem Rev 2022. [PMID: 35107989 DOI: 10.1021/acs.chemrev.1c00750] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
21 McFall-Boegeman H, Huang X. Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines. Expert Rev Vaccines 2022. [PMID: 35023430 DOI: 10.1080/14760584.2022.2029415] [Reference Citation Analysis]
22 Vila IK, Chamma H, Steer A, Saccas M, Taffoni C, Turtoi E, Reinert LS, Hussain S, Marines J, Jin L, Bonnefont X, Hubert M, Schwartz O, Paludan SR, Van Simaeys G, Doumont G, Sobhian B, Vlachakis D, Turtoi A, Laguette N. STING orchestrates the crosstalk between polyunsaturated fatty acid metabolism and inflammatory responses. Cell Metab 2022;34:125-139.e8. [PMID: 34986331 DOI: 10.1016/j.cmet.2021.12.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
23 Salkeni MA, Shin JY, Gulley JL. Resistance to Immunotherapy: Mechanisms and Means for Overcoming. Adv Exp Med Biol 2021;1342:45-80. [PMID: 34972962 DOI: 10.1007/978-3-030-79308-1_2] [Reference Citation Analysis]
24 Wu JT, He BW, Cao JL, Yan JB, Chen ZY. Involvement of STING signaling pathway in non-alcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2021; 29(24): 1396-1401 [DOI: 10.11569/wcjd.v29.i24.1396] [Cited by in CrossRef: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Corke L, Sacher A. New Strategies and Combinations to Improve Outcomes in Immunotherapy in Metastatic Non-Small-Cell Lung Cancer. Curr Oncol 2021;29:38-55. [PMID: 35049678 DOI: 10.3390/curroncol29010004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Dai E, Zhu Z, Wahed S, Qu Z, Storkus WJ, Guo ZS. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Mol Cancer 2021;20. [DOI: 10.1186/s12943-021-01464-x] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
27 Gou S, Liu W, Wang S, Chen G, Chen Z, Qiu L, Zhou X, Wu Y, Qi Y, Gao Y. Engineered Nanovaccine Targeting Clec9a+ Dendritic Cells Remarkably Enhances the Cancer Immunotherapy Effects of STING Agonist. Nano Lett 2021;21:9939-50. [PMID: 34779631 DOI: 10.1021/acs.nanolett.1c03243] [Reference Citation Analysis]
28 Marzio A, Kurz E, Sahni JM, Di Feo G, Puccini J, Jiang S, Hirsch CA, Arbini AA, Wu WL, Pass HI, Bar-sagi D, Papagiannakopoulos T, Pagano M. EMSY inhibits homologous recombination repair and the interferon response, promoting lung cancer immune evasion. Cell 2021. [DOI: 10.1016/j.cell.2021.12.005] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
29 Pons-Tostivint E, Lugat A, Fontenau JF, Denis MG, Bennouna J. STK11/LKB1 Modulation of the Immune Response in Lung Cancer: From Biology to Therapeutic Impact. Cells 2021;10:3129. [PMID: 34831355 DOI: 10.3390/cells10113129] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
30 Zheng C, Song Q, Zhao H, Kong Y, Sun L, Liu X, Feng Q, Wang L. A nanoplatform to boost multi-phases of cancer-immunity-cycle for enhancing immunotherapy. J Control Release 2021;339:403-15. [PMID: 34655676 DOI: 10.1016/j.jconrel.2021.10.011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Chernosky NM, Tamagno I. The Role of the Innate Immune System in Cancer Dormancy and Relapse. Cancers (Basel) 2021;13:5621. [PMID: 34830776 DOI: 10.3390/cancers13225621] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
32 Small S, Numan Y, Platanias LC. Innate Immune Mechanisms and Immunotherapy of Myeloid Malignancies. Biomedicines 2021;9:1631. [PMID: 34829860 DOI: 10.3390/biomedicines9111631] [Reference Citation Analysis]
33 Sun J, Zhou YQ, Xu BY, Li JY, Zhang LQ, Li DY, Zhang S, Wu JY, Gao SJ, Ye DW, Mei W. STING/NF-κB/IL-6-Mediated Inflammation in Microglia Contributes to Spared Nerve Injury (SNI)-Induced Pain Initiation. J Neuroimmune Pharmacol 2021. [PMID: 34727296 DOI: 10.1007/s11481-021-10031-6] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
34 Zhang H, Wang Y, Onuma A, He J, Wang H, Xia Y, Lal R, Cheng X, Kasumova G, Hu Z, Deng M, Beane JD, Kim AC, Huang H, Tsung A. Neutrophils Extracellular Traps Inhibition Improves PD-1 Blockade Immunotherapy in Colorectal Cancer. Cancers (Basel) 2021;13:5333. [PMID: 34771497 DOI: 10.3390/cancers13215333] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
35 Jiang M, Jia K, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, He Y, Zhou C. Alterations of DNA damage response pathway: Biomarker and therapeutic strategy for cancer immunotherapy. Acta Pharm Sin B 2021;11:2983-94. [PMID: 34729299 DOI: 10.1016/j.apsb.2021.01.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
36 Roth GA, Picece VCTM, Ou BS, Luo W, Pulendran B, Appel EA. Designing spatial and temporal control of vaccine responses. Nat Rev Mater 2021;:1-22. [PMID: 34603749 DOI: 10.1038/s41578-021-00372-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 14] [Article Influence: 1.0] [Reference Citation Analysis]
37 Wang M, Chaudhuri R, Ong WWS, Sintim HO. c-di-GMP Induces COX-2 Expression in Macrophages in a STING-Independent Manner. ACS Chem Biol 2021;16:1663-70. [PMID: 34478263 DOI: 10.1021/acschembio.1c00342] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Gong W, Liu P, Zhao F, Liu J, Hong Z, Ren H, Gu G, Wang G, Wu X, Zheng T, Zhao Y, Ren J. STING-mediated Syk Signaling Attenuates Tumorigenesis of Colitis‑associated Colorectal Cancer Through Enhancing Intestinal Epithelium Pyroptosis. Inflamm Bowel Dis 2021:izab217. [PMID: 34473281 DOI: 10.1093/ibd/izab217] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
39 Xu J, Solban N, Wang Y, Ferguson H, Perera S, Lin K, Cai M, Paul M, Schutt EG, Larsen CT, Li R, Saklatvala R, Long BJ, Ranganath S, Procopio AT, Mittal S, Templeton AC. Sonoporation‐Enhanced Delivery of STING Agonist Induced Robust Immune Modulation and Tumor Regression. Adv Therap 2021;4:2100154. [DOI: 10.1002/adtp.202100154] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
40 Yan H, Chen W. The Promise and Challenges of Cyclic Dinucleotides as Molecular Adjuvants for Vaccine Development. Vaccines (Basel) 2021;9:917. [PMID: 34452042 DOI: 10.3390/vaccines9080917] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
41 Li TF, Xu HZ, Xu YH, Yu TT, Tang JM, Li K, Wang C, Peng XC, Li QR, Sang XY, Zheng MY, Liu Y, Zhao L, Chen X. Efficient Delivery of Chlorin e6 by Polyglycerol-Coated Iron Oxide Nanoparticles with Conjugated Doxorubicin for Enhanced Photodynamic Therapy of Melanoma. Mol Pharm 2021. [PMID: 34388342 DOI: 10.1021/acs.molpharmaceut.1c00510] [Reference Citation Analysis]
42 Zhou J, Ventura CJ, Fang RH, Zhang L. Nanodelivery of STING agonists against cancer and infectious diseases. Mol Aspects Med 2021;:101007. [PMID: 34353637 DOI: 10.1016/j.mam.2021.101007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Su Z, Dhusia K, Wu Y. Coarse-grained simulations of phase separation driven by DNA and its sensor protein cGAS. Arch Biochem Biophys 2021;710:109001. [PMID: 34352244 DOI: 10.1016/j.abb.2021.109001] [Reference Citation Analysis]
44 Zhang X, Wang S, Zhu Y, Zhang M, Zhao Y, Yan Z, Wang Q, Li X. Double-edged effects of interferons on the regulation of cancer-immunity cycle. Oncoimmunology 2021;10:1929005. [PMID: 34262796 DOI: 10.1080/2162402X.2021.1929005] [Reference Citation Analysis]
45 Chen C, Yang RX, Xu HG. STING and liver disease. J Gastroenterol 2021;56:704-12. [PMID: 34159442 DOI: 10.1007/s00535-021-01803-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
46 Shore ND, Palou Redorta J, Robert G, Hutson TE, Cesari R, Hariharan S, Rodríguez Faba Ó, Briganti A, Steinberg GD. Non-muscle-invasive bladder cancer: An overview of potential new treatment options. Urol Oncol 2021:S1078-1439(21)00221-0. [PMID: 34167873 DOI: 10.1016/j.urolonc.2021.05.015] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
47 Lee SJ, Yang H, Kim WR, Lee YS, Lee WS, Kong SJ, Lee HJ, Kim JH, Cheon J, Kang B, Chon HJ, Kim C. STING activation normalizes the intraperitoneal vascular-immune microenvironment and suppresses peritoneal carcinomatosis of colon cancer. J Immunother Cancer 2021;9:e002195. [PMID: 34145029 DOI: 10.1136/jitc-2020-002195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
48 Hasegawa T, Yanagitani N, Ninomiya H, Sakamoto H, Tozuka T, Yoshida H, Amino Y, Uematsu S, Yoshizawa T, Ariyasu R, Uchibori K, Kitazono S, Horiike A, Nishio M. Association Between the Efficacy of Pembrolizumab and Low STK11/LKB1 Expression in High-PD-L1-expressing Non-small-cell Lung Cancer. In Vivo 2020;34:2997-3003. [PMID: 32871843 DOI: 10.21873/invivo.12131] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
49 Lu ZD, Chen YF, Shen S, Xu CF, Wang J. Co-delivery of Phagocytosis Checkpoint Silencer and Stimulator of Interferon Genes Agonist for Synergetic Cancer Immunotherapy. ACS Appl Mater Interfaces 2021;13:29424-38. [PMID: 34129318 DOI: 10.1021/acsami.1c08329] [Reference Citation Analysis]
50 Shi J, Liu C, Luo S, Cao T, Lin B, Zhou M, Zhang X, Wang S, Zheng T, Li X. STING agonist and IDO inhibitor combination therapy inhibits tumor progression in murine models of colorectal cancer. Cell Immunol 2021;366:104384. [PMID: 34182334 DOI: 10.1016/j.cellimm.2021.104384] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
51 Chen Y, Tang G, Qian H, Chen J, Cheng B, Zhou C, Shen Y. LncRNA LOC100129620 promotes osteosarcoma progression through regulating CDK6 expression, tumor angiogenesis, and macrophage polarization. Aging (Albany NY) 2021;13:14258-76. [PMID: 34015762 DOI: 10.18632/aging.203042] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
52 Marin-Acevedo JA, Kimbrough EO, Manochakian R, Zhao Y, Lou Y. Immunotherapies targeting stimulatory pathways and beyond. J Hematol Oncol 2021;14:78. [PMID: 33980266 DOI: 10.1186/s13045-021-01085-3] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
53 Nie J, Shan D, Li S, Zhang S, Zi X, Xing F, Shi J, Liu C, Wang T, Sun X, Zhang Q, Zhou M, Luo S, Meng H, Zhang Y, Zheng T. A Novel Ferroptosis Related Gene Signature for Prognosis Prediction in Patients With Colon Cancer. Front Oncol 2021;11:654076. [PMID: 34046350 DOI: 10.3389/fonc.2021.654076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
54 Wong W, Alouani E, Wei A, Ryu YK, Chabot JA, Manji GA. Future of immunotherapy in pancreas cancer and the trials, tribulations and successes thus far. Semin Oncol 2021:S0093-7754(21)00013-0. [PMID: 33965249 DOI: 10.1053/j.seminoncol.2021.02.007] [Reference Citation Analysis]
55 Vaes RDW, Hendriks LEL, Vooijs M, De Ruysscher D. Biomarkers of Radiotherapy-Induced Immunogenic Cell Death. Cells 2021;10:930. [PMID: 33920544 DOI: 10.3390/cells10040930] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
56 Bader CS, Jin L, Levy RB. STING and transplantation: can targeting this pathway improve outcomes? Blood 2021;137:1871-8. [PMID: 33619537 DOI: 10.1182/blood.2020008911] [Reference Citation Analysis]
57 Schijns V, Majhen D, van der Ley P, Thakur A, Summerfield A, Berisio R, Nativi C, Fernández-Tejada A, Alvarez-Dominguez C, Gizurarson S, Zamyatina A, Molinaro A, Rosano C, Jakopin Ž, Gursel I, McClean S. Rational Vaccine Design in Times of Emerging Diseases: The Critical Choices of Immunological Correlates of Protection, Vaccine Antigen and Immunomodulation. Pharmaceutics 2021;13:501. [PMID: 33917629 DOI: 10.3390/pharmaceutics13040501] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
58 McAndrews KM, Che SPY, LeBleu VS, Kalluri R. Effective delivery of STING agonist using exosomes suppresses tumor growth and enhances antitumor immunity. J Biol Chem 2021;296:100523. [PMID: 33711340 DOI: 10.1016/j.jbc.2021.100523] [Cited by in Crossref: 1] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
59 Esteves AM, Papaevangelou E, Dasgupta P, Galustian C. Combination of Interleukin-15 With a STING Agonist, ADU-S100 Analog: A Potential Immunotherapy for Prostate Cancer. Front Oncol 2021;11:621550. [PMID: 33777767 DOI: 10.3389/fonc.2021.621550] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
60 Fenton SE, Saleiro D, Platanias LC. Type I and II Interferons in the Anti-Tumor Immune Response. Cancers (Basel) 2021;13:1037. [PMID: 33801234 DOI: 10.3390/cancers13051037] [Cited by in F6Publishing: 16] [Reference Citation Analysis]
61 Duhan V, Smyth MJ. Innate myeloid cells in the tumor microenvironment. Curr Opin Immunol 2021;69:18-28. [PMID: 33588308 DOI: 10.1016/j.coi.2021.01.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
62 Chelvanambi M, Fecek RJ, Taylor JL, Storkus WJ. STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment. J Immunother Cancer 2021;9:e001906. [PMID: 33526609 DOI: 10.1136/jitc-2020-001906] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
63 Wu Y, Tang CA, Mealer C, Bastian D, Hanief Sofi M, Tian L, Schutt S, Choi HJ, Ticer T, Zhang M, Sui X, Huang L, Mellor AL, Hu CA, Yu XZ. STING negatively regulates allogeneic T-cell responses by constraining antigen-presenting cell function. Cell Mol Immunol 2021;18:632-43. [PMID: 33500563 DOI: 10.1038/s41423-020-00611-6] [Reference Citation Analysis]
64 Zhang Y, Zhai Q, Feng X, Chen D, Lu Y, Hu J, Xie H, Zhou L, Wu J, Zheng S. Cancer cell-intrinsic STING is associated with CD8 + T-cell infiltration and might serve as a potential immunotherapeutic target in hepatocellular carcinoma. Clin Transl Oncol 2021;23:1314-24. [PMID: 33502741 DOI: 10.1007/s12094-020-02519-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Perciani CT, Liu LY, Wood L, MacParland SA. Enhancing Immunity with Nanomedicine: Employing Nanoparticles to Harness the Immune System. ACS Nano 2021;15:7-20. [PMID: 33346646 DOI: 10.1021/acsnano.0c08913] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
66 Vashi N, Bakhoum SF. The Evolution of STING Signaling and Its Involvement in Cancer. Trends Biochem Sci 2021;46:446-60. [PMID: 33461879 DOI: 10.1016/j.tibs.2020.12.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
67 Adashek JJ, Subbiah V, Kurzrock R. From Tissue-Agnostic to N-of-One Therapies: (R)Evolution of the Precision Paradigm. Trends in Cancer 2021;7:15-28. [DOI: 10.1016/j.trecan.2020.08.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
68 Haase S, Nuñez FM, Gauss JC, Thompson S, Brumley E, Lowenstein P, Castro MG. Hemispherical Pediatric High-Grade Glioma: Molecular Basis and Therapeutic Opportunities. Int J Mol Sci 2020;21:E9654. [PMID: 33348922 DOI: 10.3390/ijms21249654] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
69 Zhou L, Xu Q, Huang L, Jin J, Zuo X, Zhang Q, Ye L, Zhu S, Zhan P, Ren J, Lv T, Song Y. Low-dose carboplatin reprograms tumor immune microenvironment through STING signaling pathway and synergizes with PD-1 inhibitors in lung cancer. Cancer Lett 2021;500:163-71. [PMID: 33278498 DOI: 10.1016/j.canlet.2020.11.049] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
70 Li K, Ye Y, Liu L, Sha Q, Wang X, Jiao T, Zhang L, Wang J. The lipid platform increases the activity of STING agonists to synergize checkpoint blockade therapy against melanoma. Biomater Sci 2021;9:765-73. [PMID: 33201161 DOI: 10.1039/d0bm00870b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
71 Borzi C, Galli G, Ganzinelli M, Signorelli D, Vernieri C, Garassino MC, Sozzi G, Moro M. Beyond LKB1 Mutations in Non-Small Cell Lung Cancer: Defining LKB1less Phenotype to Optimize Patient Selection and Treatment. Pharmaceuticals (Basel) 2020;13:E385. [PMID: 33202760 DOI: 10.3390/ph13110385] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
72 Wehbe M, Wang-Bishop L, Becker KW, Shae D, Baljon JJ, He X, Christov P, Boyd KL, Balko JM, Wilson JT. Nanoparticle delivery improves the pharmacokinetic properties of cyclic dinucleotide STING agonists to open a therapeutic window for intravenous administration. J Control Release 2021;330:1118-29. [PMID: 33189789 DOI: 10.1016/j.jconrel.2020.11.017] [Cited by in Crossref: 8] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
73 Qu X, Li JW, Chan J, Meehan K. Extracellular Vesicles in Head and Neck Cancer: A Potential New Trend in Diagnosis, Prognosis, and Treatment. Int J Mol Sci 2020;21:E8260. [PMID: 33158181 DOI: 10.3390/ijms21218260] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
74 Go EJ, Yang H, Chon HJ, Yang D, Ryu W, Kim DH, Han DK, Kim C, Park W. Combination of Irreversible Electroporation and STING Agonist for Effective Cancer Immunotherapy. Cancers (Basel). 2020;12. [PMID: 33114476 DOI: 10.3390/cancers12113123] [Cited by in Crossref: 5] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
75 Selim NM, El-Hawary SS, El Zalabani SM, Shamma RN, Mahdy NES, Sherif NH, Fahmy HA, Mekkawy MH, Yasri A, Sobeh M. Impact of Washingtonia robusta Leaves on Gamma Irradiation-Induced Hepatotoxicity in Rats and Correlation with STING Pathway and Phenolic Composition. Pharmaceuticals (Basel) 2020;13:E320. [PMID: 33086669 DOI: 10.3390/ph13100320] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
76 Jiang Y, Tsoi LC, Billi AC, Ward NL, Harms PW, Zeng C, Maverakis E, Kahlenberg JM, Gudjonsson JE. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020;5:142067. [PMID: 33055429 DOI: 10.1172/jci.insight.142067] [Cited by in Crossref: 6] [Cited by in F6Publishing: 37] [Article Influence: 3.0] [Reference Citation Analysis]
77 Bröckelmann PJ, de Jong MRW, Jachimowicz RD. Targeting DNA Repair, Cell Cycle, and Tumor Microenvironment in B Cell Lymphoma. Cells 2020;9:E2287. [PMID: 33066395 DOI: 10.3390/cells9102287] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
78 Nastasi C, Mannarino L, D'Incalci M. DNA Damage Response and Immune Defense. Int J Mol Sci 2020;21:E7504. [PMID: 33053746 DOI: 10.3390/ijms21207504] [Cited by in Crossref: 15] [Cited by in F6Publishing: 29] [Article Influence: 7.5] [Reference Citation Analysis]
79 Revach OY, Liu S, Jenkins RW. Targeting TANK-binding kinase 1 (TBK1) in cancer. Expert Opin Ther Targets 2020;24:1065-78. [PMID: 32962465 DOI: 10.1080/14728222.2020.1826929] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
80 Kugeratski FG, Kalluri R. Exosomes as mediators of immune regulation and immunotherapy in cancer. FEBS J 2021;288:10-35. [PMID: 32910536 DOI: 10.1111/febs.15558] [Cited by in Crossref: 14] [Cited by in F6Publishing: 46] [Article Influence: 7.0] [Reference Citation Analysis]
81 Frisch SM, MacFawn IP. Type I interferons and related pathways in cell senescence. Aging Cell 2020;19:e13234. [PMID: 32918364 DOI: 10.1111/acel.13234] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
82 Li Z, Cai S, Sun Y, Li L, Ding S, Wang X. When STING Meets Viruses: Sensing, Trafficking and Response. Front Immunol 2020;11:2064. [PMID: 33133062 DOI: 10.3389/fimmu.2020.02064] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
83 Zheng J, Mo J, Zhu T, Zhuo W, Yi Y, Hu S, Yin J, Zhang W, Zhou H, Liu Z. Comprehensive elaboration of the cGAS-STING signaling axis in cancer development and immunotherapy. Mol Cancer 2020;19:133. [PMID: 32854711 DOI: 10.1186/s12943-020-01250-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 34] [Article Influence: 5.0] [Reference Citation Analysis]
84 Vila IK, Fretaud M, Vlachakis D, Laguette N, Langevin C. Animal Models for the Study of Nucleic Acid Immunity: Novel Tools and New Perspectives. J Mol Biol 2020;432:5529-43. [PMID: 32860771 DOI: 10.1016/j.jmb.2020.08.016] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
85 Zhang J, Chen Y, Chen X, Zhang W, Zhao L, Weng L, Tian H, Wu Z, Tan X, Ge X, Wang P, Fang L. Deubiquitinase USP35 restrains STING-mediated interferon signaling in ovarian cancer. Cell Death Differ 2021;28:139-55. [PMID: 32678307 DOI: 10.1038/s41418-020-0588-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
86 Yang J, Wang C, Shi S, Dong C. Nanotechnologies for enhancing cancer immunotherapy. Nano Res 2020;13:2595-616. [DOI: 10.1007/s12274-020-2904-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
87 Chen X, Jin Y, Gong L, He D, Cheng Y, Xiao M, Zhu Y, Wang Z, Cao K. Bioinformatics Analysis Finds Immune Gene Markers Related to the Prognosis of Bladder Cancer. Front Genet 2020;11:607. [PMID: 32655621 DOI: 10.3389/fgene.2020.00607] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
88 Le Naour J, Zitvogel L, Galluzzi L, Vacchelli E, Kroemer G. Trial watch: STING agonists in cancer therapy. Oncoimmunology 2020;9:1777624. [PMID: 32934881 DOI: 10.1080/2162402X.2020.1777624] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 15.5] [Reference Citation Analysis]
89 Pedersen JG, Madsen AT, Gammelgaard KR, Aggerholm-Pedersen N, Sørensen BS, Øllegaard TH, Jakobsen MR. Inflammatory Cytokines and ctDNA Are Biomarkers for Progression in Advanced-Stage Melanoma Patients Receiving Checkpoint Inhibitors. Cancers (Basel) 2020;12:E1414. [PMID: 32486146 DOI: 10.3390/cancers12061414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
90 Tian Y, Bao Z, Ji Y, Mei X, Yang H. Epigallocatechin-3-Gallate Protects H2O2-Induced Nucleus Pulposus Cell Apoptosis and Inflammation by Inhibiting cGAS/Sting/NLRP3 Activation. Drug Des Devel Ther 2020;14:2113-22. [PMID: 32546974 DOI: 10.2147/DDDT.S251623] [Cited by in Crossref: 5] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
91 Lampert EJ, Zimmer A, Padget M, Cimino-Mathews A, Nair JR, Liu Y, Swisher EM, Hodge JW, Nixon AB, Nichols E, Bagheri MH, Levy E, Radke MR, Lipkowitz S, Annunziata CM, Taube JM, Steinberg SM, Lee JM. Combination of PARP Inhibitor Olaparib, and PD-L1 Inhibitor Durvalumab, in Recurrent Ovarian Cancer: a Proof-of-Concept Phase II Study. Clin Cancer Res 2020;26:4268-79. [PMID: 32398324 DOI: 10.1158/1078-0432.CCR-20-0056] [Cited by in Crossref: 33] [Cited by in F6Publishing: 57] [Article Influence: 16.5] [Reference Citation Analysis]
92 Lo Cigno I, Calati F, Albertini S, Gariglio M. Subversion of Host Innate Immunity by Human Papillomavirus Oncoproteins. Pathogens 2020;9:E292. [PMID: 32316236 DOI: 10.3390/pathogens9040292] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]