BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Koyanagi M, Wada S, Kawano-Yamashita E, Hara Y, Kuraku S, Kosaka S, Kawakami K, Tamotsu S, Tsukamoto H, Shichida Y, Terakita A. Diversification of non-visual photopigment parapinopsin in spectral sensitivity for diverse pineal functions. BMC Biol 2015;13:73. [PMID: 26370232 DOI: 10.1186/s12915-015-0174-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Vöcking O, Macias-Muñoz A, Jaeger SJ, Oakley TH. Deep Diversity: Extensive Variation in the Components of Complex Visual Systems across Animals. Cells 2022;11. [PMID: 36552730 DOI: 10.3390/cells11243966] [Reference Citation Analysis]
2 Koyanagi M, Shen B, Nagata T, Sun L, Wada S, Kamimura S, Kage-Nakadai E, Terakita A. High-performance optical control of GPCR signaling by bistable animal opsins MosOpn3 and LamPP in a molecular property-dependent manner. Proc Natl Acad Sci U S A 2022;119:e2204341119. [PMID: 36417444 DOI: 10.1073/pnas.2204341119] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Koyanagi M, Honda H, Yokono H, Sato R, Nagata T, Terakita A. Expression of a homologue of a vertebrate non-visual opsin Opn3 in the insect photoreceptors. Philos Trans R Soc Lond B Biol Sci 2022;377:20210274. [PMID: 36058246 DOI: 10.1098/rstb.2021.0274] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Dekens MPS, Fontinha BM, Gallach M, Pflügler S, Tessmar‐raible K. Melanopsin elevates locomotor activity during the wake state of the diurnal zebrafish. EMBO Reports 2022;23. [DOI: 10.15252/embr.202051528] [Reference Citation Analysis]
5 Koyanagi M, Shen B, Nagata T, Sun L, Wada S, Kamimura S, Kage-nakadai E, Terakita A. High-performance GPCR optogenetics based on molecular properties of animal opsins, MosOpn3 and LamPP.. [DOI: 10.1101/2022.02.07.479375] [Reference Citation Analysis]
6 Bertolesi GE, Debnath N, Malik HR, Man LLH, Mcfarlane S. Type II Opsins in the Eye, the Pineal Complex and the Skin of Xenopus laevis: Using Changes in Skin Pigmentation as a Readout of Visual and Circadian Activity. Front Neuroanat 2022;15:784478. [DOI: 10.3389/fnana.2021.784478] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Bell GRR, Rincón E, Akdoğan E, Collins SR. Optogenetic control of receptors reveals distinct roles for actin- and Cdc42-dependent negative signals in chemotactic signal processing. Nat Commun 2021;12:6148. [PMID: 34785668 DOI: 10.1038/s41467-021-26371-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
8 Yamaguchi K, Koyanagi M, Sato K, Terakita A, Kuraku S. Whale shark rhodopsin adapted to its vertically wide-ranging lifestyle.. [DOI: 10.1101/2021.10.01.462724] [Reference Citation Analysis]
9 Wada S, Kawano-Yamashita E, Sugihara T, Tamotsu S, Koyanagi M, Terakita A. Insights into the evolutionary origin of the pineal color discrimination mechanism from the river lamprey. BMC Biol 2021;19:188. [PMID: 34526036 DOI: 10.1186/s12915-021-01121-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Alaasam VJ, Kernbach ME, Miller CR, Ferguson SM. The diversity of photosensitivity and its implications for light pollution. Integr Comp Biol 2021:icab156. [PMID: 34232263 DOI: 10.1093/icb/icab156] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Bell GRR, Rincón E, Akdoğan E, Collins SR. Optogenetic control of receptors reveals distinct roles for actin- and Cdc42-dependent negative signals in chemotactic signal processing.. [DOI: 10.1101/2021.04.03.438340] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
12 Shen B, Wada S, Nishioka H, Nagata T, Kawano-Yamashita E, Koyanagi M, Terakita A. Functional identification of an opsin kinase underlying inactivation of the pineal bistable opsin parapinopsin in zebrafish. Zoological Lett 2021;7:1. [PMID: 33579376 DOI: 10.1186/s40851-021-00171-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
13 Koyanagi M, Saito T, Wada S, Nagata T, Kawano-Yamashita E, Terakita A. Optogenetic Potentials of Diverse Animal Opsins: Parapinopsin, Peropsin, LWS Bistable Opsin. Adv Exp Med Biol 2021;1293:141-51. [PMID: 33398811 DOI: 10.1007/978-981-15-8763-4_8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
14 Basili D, Gioacchini G, Todisco V, Candelma M, Marisaldi L, Pappalardo L, Carnevali O. Opsins and gonadal circadian rhythm in the swordfish (Xiphias gladius) ovary: Their potential roles in puberty and reproductive seasonality. Gen Comp Endocrinol 2021;303:113707. [PMID: 33387470 DOI: 10.1016/j.ygcen.2020.113707] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Bertolesi GE, Atkinson-leadbeater K, Mackey EM, Song YN, Heyne B, Mcfarlane S. The regulation of skin pigmentation in response to environmental light by pineal Type II opsins and skin melanophore melatonin receptors. Journal of Photochemistry and Photobiology B: Biology 2020;212:112024. [DOI: 10.1016/j.jphotobiol.2020.112024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
16 Steindal IAF, Whitmore D. Zebrafish Circadian Clock Entrainment and the Importance of Broad Spectral Light Sensitivity. Front Physiol 2020;11:1002. [PMID: 32922310 DOI: 10.3389/fphys.2020.01002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
17 Sapède D, Chaigne C, Blader P, Cau E. Functional heterogeneity in the pineal projection neurons of zebrafish. Mol Cell Neurosci 2020;103:103468. [PMID: 32027966 DOI: 10.1016/j.mcn.2020.103468] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
18 Nilsson D. OBSOLETE: Eye Evolution in Animals. Reference Module in Neuroscience and Biobehavioral Psychology 2020. [DOI: 10.1016/b978-0-12-809324-5.00013-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
19 Nilsson D. Eye Evolution in Animals. The Senses: A Comprehensive Reference 2020. [DOI: 10.1016/b978-0-12-805408-6.00013-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
20 Liu Y, Zhang W, Du X, Liu Y, Qu J, Liu X, Liu J, Zhang Q. Genome-wide identification of nonvisual opsin family reveals amplification of RPE-retinal G protein receptor gene (RGR) and offers novel insights into functions of RGR(s) in Paralichthys olivaceus (Paralichthyidae, Teleostei). J Exp Zool B Mol Dev Evol 2020;334:25-36. [PMID: 31743605 DOI: 10.1002/jez.b.22914] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
21 Sapède D, Chaigne C, Blader P, Cau E. A novel subtype of pineal projection neurons expressing melanopsin share a common developmental program with classical projection neurons.. [DOI: 10.1101/712091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Wada S, Shen B, Kawano-Yamashita E, Nagata T, Hibi M, Tamotsu S, Koyanagi M, Terakita A. Color opponency with a single kind of bistable opsin in the zebrafish pineal organ. Proc Natl Acad Sci U S A 2018;115:11310-5. [PMID: 30322939 DOI: 10.1073/pnas.1802592115] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
23 Bertolesi GE, McFarlane S. Seeing the light to change colour: An evolutionary perspective on the role of melanopsin in neuroendocrine circuits regulating light-mediated skin pigmentation. Pigment Cell Melanoma Res 2018;31:354-73. [PMID: 29239123 DOI: 10.1111/pcmr.12678] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.6] [Reference Citation Analysis]
24 Tsukamoto H, Chen IS, Kubo Y, Furutani Y. A ciliary opsin in the brain of a marine annelid zooplankton is ultraviolet-sensitive, and the sensitivity is tuned by a single amino acid residue. J Biol Chem 2017;292:12971-80. [PMID: 28623234 DOI: 10.1074/jbc.M117.793539] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
25 Spitschan M, Lucas RJ, Brown TM. Chromatic clocks: Color opponency in non-image-forming visual function. Neurosci Biobehav Rev 2017;78:24-33. [PMID: 28442402 DOI: 10.1016/j.neubiorev.2017.04.016] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
26 Koyanagi M, Kawano-yamashita E, Wada S, Terakita A. Vertebrate Bistable Pigment Parapinopsin: Implications for Emergence of Visual Signaling and Neofunctionalization of Non-visual Pigment. Front Ecol Evol 2017;5. [DOI: 10.3389/fevo.2017.00023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
27 Cronin TW, Bok MJ. Photoreception and vision in the ultraviolet. Journal of Experimental Biology 2016;219:2790-801. [DOI: 10.1242/jeb.128769] [Cited by in Crossref: 92] [Cited by in F6Publishing: 92] [Article Influence: 13.1] [Reference Citation Analysis]
28 Sugihara T, Nagata T, Mason B, Koyanagi M, Terakita A. Absorption Characteristics of Vertebrate Non-Visual Opsin, Opn3. PLoS One 2016;11:e0161215. [PMID: 27532629 DOI: 10.1371/journal.pone.0161215] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 6.3] [Reference Citation Analysis]
29 Sato K, Yamashita T, Haruki Y, Ohuchi H, Kinoshita M, Shichida Y. Two UV-Sensitive Photoreceptor Proteins, Opn5m and Opn5m2 in Ray-Finned Fish with Distinct Molecular Properties and Broad Distribution in the Retina and Brain. PLoS One 2016;11:e0155339. [PMID: 27167972 DOI: 10.1371/journal.pone.0155339] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.6] [Reference Citation Analysis]
30 Kawano-Yamashita E, Koyanagi M, Wada S, Tsukamoto H, Nagata T, Terakita A. Activation of Transducin by Bistable Pigment Parapinopsin in the Pineal Organ of Lower Vertebrates. PLoS One 2015;10:e0141280. [PMID: 26492337 DOI: 10.1371/journal.pone.0141280] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 2.9] [Reference Citation Analysis]