BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Klimm F, Toledo EM, Monfeuga T, Zhang F, Deane CM, Reinert G. Functional module detection through integration of single-cell RNA sequencing data with protein-protein interaction networks. BMC Genomics 2020;21:756. [PMID: 33138772 DOI: 10.1186/s12864-020-07144-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Xuan C, Wang Y, Zhang B, Wu H, Ding T, Gao J. scBPGRN: Integrating single-cell multi-omics data to construct gene regulatory networks based on BP neural network. Comput Biol Med 2022;151:106249. [PMID: 36335815 DOI: 10.1016/j.compbiomed.2022.106249] [Reference Citation Analysis]
2 Robin V, Bodein A, Scott-boyer M, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein–protein interaction network in a multi-omics integration context. Front Mol Biosci 2022;9:962799. [DOI: 10.3389/fmolb.2022.962799] [Reference Citation Analysis]
3 Pardo-diaz J, Poole PS, Beguerisse-díaz M, Deane CM, Reinert G. Generating weighted and thresholded gene coexpression networks using signed distance correlation. Net Sci 2022;10:131-145. [DOI: 10.1017/nws.2022.13] [Reference Citation Analysis]
4 Ziv M, Yeger-lotem E. Network Modeling of Tissues and Cell Types. Reference Module in Life Sciences 2022. [DOI: 10.1016/b978-0-12-821618-7.00235-2] [Reference Citation Analysis]
5 Hrovatin K, Fischer DS, Theis FJ. Toward modeling metabolic state from single-cell transcriptomics. Mol Metab 2021;:101396. [PMID: 34785394 DOI: 10.1016/j.molmet.2021.101396] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
6 Zhang C, Gao L, Wang B, Gao Y. Improving Single-Cell RNA-seq Clustering by Integrating Pathways. Brief Bioinform 2021:bbab147. [PMID: 33940590 DOI: 10.1093/bib/bbab147] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Grønning AGB, Oubounyt M, Kanev K, Lund J, Kacprowski T, Zehn D, Röttger R, Baumbach J. Enabling single-cell trajectory network enrichment. Nat Comput Sci 2021;1:153-63. [DOI: 10.1038/s43588-021-00025-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
8 Klimm F. Functional change along cellular trajectories. Nat Comput Sci 2021;1:102-103. [DOI: 10.1038/s43588-021-00026-x] [Reference Citation Analysis]
9 Reyna MA, Chitra U, Elyanow R, Raphael BJ. NetMix: A Network-Structured Mixture Model for Reduced-Bias Estimation of Altered Subnetworks. J Comput Biol 2021;28:469-84. [PMID: 33400606 DOI: 10.1089/cmb.2020.0435] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
10 Basu A, Ash PE, Wolozin B, Emili A. Protein Interaction Network Biology in Neuroscience. Proteomics 2021;21:e1900311. [PMID: 33314619 DOI: 10.1002/pmic.201900311] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
11 Ljubić I. Solving Steiner trees: Recent advances, challenges, and perspectives. Networks 2021;77:177-204. [DOI: 10.1002/net.22005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]