BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sim AD, Wheeler D. The venom gland transcriptome of the parasitoid wasp Nasonia vitripennis highlights the importance of novel genes in venom function. BMC Genomics 2016;17:571. [PMID: 27503142 DOI: 10.1186/s12864-016-2924-7] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Xin B, Liu P, Xu X, Zhang S, Zheng Y. Identification of Venom Proteins of the Indigenous Endoparasitoid Chouioia cunea (Hymenoptera: Eulophidae). Journal of Economic Entomology 2017;110:2022-30. [DOI: 10.1093/jee/tox200] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
2 Li R, Yan Z, Wang J, Song Q, Wang Z. De novo characterization of venom apparatus transcriptome of Pardosa pseudoannulata and analysis of its gene expression in response to Bt protein. BMC Biotechnol 2017;17:73. [PMID: 29115956 DOI: 10.1186/s12896-017-0392-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
3 Arvidson R, Kaiser M, Lee SS, Urenda JP, Dail C, Mohammed H, Nolan C, Pan S, Stajich JE, Libersat F, Adams ME. Parasitoid Jewel Wasp Mounts Multipronged Neurochemical Attack to Hijack a Host Brain. Mol Cell Proteomics 2019;18:99-114. [PMID: 30293061 DOI: 10.1074/mcp.RA118.000908] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
4 Martinson EO, Siebert AL, He M, Kelkar YD, Doucette LA, Werren JH. Evaluating the evolution and function of the dynamic Venom Y protein in ectoparasitoid wasps. Insect Mol Biol 2019;28:499-508. [PMID: 30636014 DOI: 10.1111/imb.12565] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
5 Benoist R, Capdevielle-Dulac C, Chantre C, Jeannette R, Calatayud PA, Drezen JM, Dupas S, Le Rouzic A, Le Ru B, Moreau L, Van Dijk E, Kaiser L, Mougel F. Quantitative trait loci involved in the reproductive success of a parasitoid wasp. Mol Ecol 2020;29:3476-93. [PMID: 32731311 DOI: 10.1111/mec.15567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Cusumano A, Duvic B, Jouan V, Ravallec M, Legeai F, Peri E, Colazza S, Volkoff AN. First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role. J Insect Physiol 2018;107:68-80. [PMID: 29477467 DOI: 10.1016/j.jinsphys.2018.02.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
7 Wang J, Song J, Fang Q, Yao H, Wang F, Song Q, Ye G. Insight into the Functional Diversification of Lipases in the Endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae) by Genome-scale Annotation and Expression Analysis. Insects 2020;11:E227. [PMID: 32260574 DOI: 10.3390/insects11040227] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Senji Laxme RR, Suranse V, Sunagar K. Arthropod venoms: Biochemistry, ecology and evolution. Toxicon 2019;158:84-103. [PMID: 30529476 DOI: 10.1016/j.toxicon.2018.11.433] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
9 Scieuzo C, Salvia R, Franco A, Pezzi M, Cozzolino F, Chicca M, Scapoli C, Vogel H, Monti M, Ferracini C, Pucci P, Alma A, Falabella P. An integrated transcriptomic and proteomic approach to identify the main Torymus sinensis venom components. Sci Rep 2021;11:5032. [PMID: 33658582 DOI: 10.1038/s41598-021-84385-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
10 Becchimanzi A, Avolio M, Bostan H, Colantuono C, Cozzolino F, Mancini D, Chiusano ML, Pucci P, Caccia S, Pennacchio F. Venomics of the ectoparasitoid wasp Bracon nigricans. BMC Genomics 2020;21:34. [PMID: 31924169 DOI: 10.1186/s12864-019-6396-4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
11 Salvia R, Cozzolino F, Scieuzo C, Grimaldi A, Franco A, Vinson SB, Monti M, Falabella P. Identification and Functional Characterization of Toxoneuron nigriceps Ovarian Proteins Involved in the Early Suppression of Host Immune Response. Insects 2022;13:144. [DOI: 10.3390/insects13020144] [Reference Citation Analysis]
12 Teng Z, Wu H, Ye X, Xiong S, Xu G, Wang F, Fang Q, Ye G. An Ovarian Protein Involved in Passive Avoidance of an Endoparasitoid To Evade Its Host Immune Response. J Proteome Res 2019;18:2695-705. [PMID: 31244211 DOI: 10.1021/acs.jproteome.8b00824] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
13 Shafeeq T, Ulabdin Z, Lee K. Induction of stress- and immune-associated genes in the Indian meal moth Plodia interpunctella against envenomation by the ectoparasitoid Bracon hebetor: SHAFEEQ et al. Arch Insect Biochem Physiol 2017;96:e21405. [DOI: 10.1002/arch.21405] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
14 Cook N, Boulton RA, Green J, Trivedi U, Tauber E, Pannebakker BA, Ritchie MG, Shuker DM. Differential gene expression is not required for facultative sex allocation: a transcriptome analysis of brain tissue in the parasitoid wasp Nasonia vitripennis. R Soc Open Sci 2018;5:171718. [PMID: 29515880 DOI: 10.1098/rsos.171718] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]