BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Worthey EA, Raca G, Laffin JJ, Wilk BM, Harris JM, Jakielski KJ, Dimmock DP, Strand EA, Shriberg LD. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech. J Neurodev Disord 2013;5:29. [PMID: 24083349 DOI: 10.1186/1866-1955-5-29] [Cited by in Crossref: 55] [Cited by in F6Publishing: 55] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Benítez-Burraco A, Jiménez-Romero MS, Fernández-Urquiza M. Delving into the Genetic Causes of Language Impairment in a Case of Partial Deletion of NRXN1. Mol Syndromol 2023;13:496-510. [PMID: 36660026 DOI: 10.1159/000524710] [Reference Citation Analysis]
2 Gaweda-Walerych K, Sitek EJ, Borczyk M, Narożańska E, Brockhuis B, Korostyński M, Schinwelski M, Siemiński M, Sławek J, Zekanowski C. A Patient with Corticobasal Syndrome and Progressive Non-Fluent Aphasia (CBS-PNFA), with Variants in ATP7B, SETX, SORL1, and FOXP1 Genes. Genes (Basel) 2022;13. [PMID: 36553628 DOI: 10.3390/genes13122361] [Reference Citation Analysis]
3 Azfar M, van Veen S, Houdou M, Hamouda NN, Eggermont J, Vangheluwe P. P5B-ATPases in the mammalian polyamine transport system and their role in disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2022;1869:119354. [DOI: 10.1016/j.bbamcr.2022.119354] [Reference Citation Analysis]
4 Mountford HS, Braden R, Newbury DF, Morgan AT. The Genetic and Molecular Basis of Developmental Language Disorder: A Review. Children (Basel) 2022;9:586. [PMID: 35626763 DOI: 10.3390/children9050586] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Chilosi AM, Podda I, Ricca I, Comparini A, Franchi B, Fiori S, Pasquariello R, Casalini C, Cipriani P, Santorelli FM. Differences and Commonalities in Children with Childhood Apraxia of Speech and Comorbid Neurodevelopmental Disorders: A Multidimensional Perspective. JPM 2022;12:313. [DOI: 10.3390/jpm12020313] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Scott KE, Mann RS, Schormans AL, Schmid S, Allman BL. Hyperexcitable and Immature-Like Neuronal Activity in the Auditory Cortex of Adult Rats Lacking the Language-Linked CNTNAP2 Gene. Cereb Cortex 2022:bhab517. [PMID: 35106542 DOI: 10.1093/cercor/bhab517] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Benchek P, Igo RP Jr, Voss-Hoynes H, Wren Y, Miller G, Truitt B, Zhang W, Osterman M, Freebairn L, Tag J, Taylor HG, Chan ER, Roussos P, Lewis B, Stein CM, Iyengar SK. Association between genes regulating neural pathways for quantitative traits of speech and language disorders. NPJ Genom Med 2021;6:64. [PMID: 34315907 DOI: 10.1038/s41525-021-00225-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Jacks A, Haley KL. Apraxia of Speech. The Handbook of Language and Speech Disorders 2021. [DOI: 10.1002/9781119606987.ch17] [Reference Citation Analysis]
9 Savatt JM, Myers SM. Genetic Testing in Neurodevelopmental Disorders. Front Pediatr 2021;9:526779. [PMID: 33681094 DOI: 10.3389/fped.2021.526779] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 19.0] [Reference Citation Analysis]
10 Benchek P, Igo RP, Voss-hoynes H, Wren Y, Miller G, Truitt B, Zhang W, Osterman M, Freebairn L, Tag J, Taylor HG, Chan ER, Roussos P, Lewis B, Stein CM, Iyengar SK. Association between genes regulating neural pathways for quantitative traits of speech and language disorders.. [DOI: 10.1101/2021.02.09.21251441] [Reference Citation Analysis]
11 Stein CM, Benchek P, Miller G, Hall NB, Menon D, Freebairn L, Tag J, Vick J, Taylor HG, Lewis BA, Iyengar SK. Feature-driven classification reveals potential comorbid subtypes within childhood apraxia of speech. BMC Pediatr 2020;20:519. [PMID: 33187500 DOI: 10.1186/s12887-020-02421-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
12 Shriberg LD, Strand EA, Jakielski KJ, Mabie HL. Estimates of the prevalence of speech and motor speech disorders in persons with complex neurodevelopmental disorders. Clin Linguist Phon 2019;33:707-36. [PMID: 31221012 DOI: 10.1080/02699206.2019.1595732] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 9.0] [Reference Citation Analysis]
13 Wilson EM, Abbeduto L, Camarata SM, Shriberg LD. Estimates of the prevalence of speech and motor speech disorders in adolescents with Down syndrome. Clin Linguist Phon 2019;33:772-89. [PMID: 31221009 DOI: 10.1080/02699206.2019.1595735] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
14 Allison KM. Measuring Speech Intelligibility in Children With Motor Speech Disorders. Perspect ASHA SIGs 2020;5:809-20. [DOI: 10.1044/2020_persp-19-00110] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Allison KM, Cordella C, Iuzzini-Seigel J, Green JR. Differential Diagnosis of Apraxia of Speech in Children and Adults: A Scoping Review. J Speech Lang Hear Res 2020;63:2952-94. [PMID: 32783767 DOI: 10.1044/2020_JSLHR-20-00061] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
16 Miller HE, Guenther FH. Modelling speech motor programming and apraxia of speech in the DIVA/GODIVA neurocomputational framework. Aphasiology 2021;35:424-41. [PMID: 34108793 DOI: 10.1080/02687038.2020.1765307] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
17 Alemany-Navarro M, Cruz R, Real E, Segalàs C, Bertolín S, Baenas I, Domènech L, Rabionet R, Carracedo Á, Menchón JM, Alonso P. Exploring genetic variants in obsessive compulsive disorder severity: A GWAS approach. J Affect Disord 2020;267:23-32. [PMID: 32063569 DOI: 10.1016/j.jad.2020.01.161] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Scott R, Sánchez-Aguilera A, van Elst K, Lim L, Dehorter N, Bae SE, Bartolini G, Peles E, Kas MJH, Bruining H, Marín O. Loss of Cntnap2 Causes Axonal Excitability Deficits, Developmental Delay in Cortical Myelination, and Abnormal Stereotyped Motor Behavior. Cereb Cortex 2019;29:586-97. [PMID: 29300891 DOI: 10.1093/cercor/bhx341] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 14.0] [Reference Citation Analysis]
19 Nudel R, Christiani CAJ, Ohland J, Uddin MJ, Hemager N, Ellersgaard DV, Spang KS, Burton BK, Greve AN, Gantriis DL, Bybjerg-Grauholm J, Jepsen JRM, Thorup AAE, Mors O, Nordentoft M, Werge T. Language deficits in specific language impairment, attention deficit/hyperactivity disorder, and autism spectrum disorder: An analysis of polygenic risk. Autism Res 2020;13:369-81. [PMID: 31577390 DOI: 10.1002/aur.2211] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 2.3] [Reference Citation Analysis]
20 Miller GJ, Lewis B, Benchek P, Freebairn L, Tag J, Budge K, Iyengar SK, Voss-Hoynes H, Taylor HG, Stein C. Reading Outcomes for Individuals With Histories of Suspected Childhood Apraxia of Speech. Am J Speech Lang Pathol 2019;28:1432-47. [PMID: 31419159 DOI: 10.1044/2019_AJSLP-18-0132] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
21 Gibbons AS, Bell LM, Udawela M, Dean B. mRNA expression of the P5 ATPase ATP13A4 is increased in Broca’s area from subjects with schizophrenia. The World Journal of Biological Psychiatry 2020;21:402-8. [DOI: 10.1080/15622975.2018.1548781] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
22 Sriganesh R, Ponniah RJ. Genetics of language and its implications on language interventions. J Genet 2018;97:1485-91. [DOI: 10.1007/s12041-018-1006-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
23 Saint-Martin M, Joubert B, Pellier-Monnin V, Pascual O, Noraz N, Honnorat J. Contactin-associated protein-like 2, a protein of the neurexin family involved in several human diseases. Eur J Neurosci 2018;48:1906-23. [PMID: 30028556 DOI: 10.1111/ejn.14081] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
24 Sørensen DM, Holemans T, van Veen S, Martin S, Arslan T, Haagendahl IW, Holen HW, Hamouda NN, Eggermont J, Palmgren M, Vangheluwe P. Parkinson disease related ATP13A2 evolved early in animal evolution. PLoS One 2018;13:e0193228. [PMID: 29505581 DOI: 10.1371/journal.pone.0193228] [Cited by in Crossref: 26] [Cited by in F6Publishing: 33] [Article Influence: 5.2] [Reference Citation Analysis]
25 Eising E, Carrion-Castillo A, Vino A, Strand EA, Jakielski KJ, Scerri TS, Hildebrand MS, Webster R, Ma A, Mazoyer B, Francks C, Bahlo M, Scheffer IE, Morgan AT, Shriberg LD, Fisher SE. A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Mol Psychiatry 2019;24:1065-78. [PMID: 29463886 DOI: 10.1038/s41380-018-0020-x] [Cited by in Crossref: 77] [Cited by in F6Publishing: 81] [Article Influence: 15.4] [Reference Citation Analysis]
26 Xia W, Qin H, Li X, Zhang Z. Language Gene Basis for Precision Personalized Education and Liberal Education (I). Proceedings of the 2nd International Conference on E-Society, E-Education and E-Technology - ICSET 2018 2018. [DOI: 10.1145/3268808.3268859] [Cited by in Crossref: 2] [Article Influence: 0.4] [Reference Citation Analysis]
27 Mountford HS, Newbury DF. The genomic landscape of language: Insights into evolution. Journal of Language Evolution 2018;3:49-58. [DOI: 10.1093/jole/lzx019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 26] [Article Influence: 1.3] [Reference Citation Analysis]
28 Siper PM, De Rubeis S, Trelles MDP, Durkin A, Di Marino D, Muratet F, Frank Y, Lozano R, Eichler EE, Kelly M, Beighley J, Gerdts J, Wallace AS, Mefford HC, Bernier RA, Kolevzon A, Buxbaum JD. Prospective investigation of FOXP1 syndrome. Mol Autism 2017;8:57. [PMID: 29090079 DOI: 10.1186/s13229-017-0172-6] [Cited by in Crossref: 46] [Cited by in F6Publishing: 48] [Article Influence: 7.7] [Reference Citation Analysis]
29 Deriziotis P, Fisher SE. Speech and Language: Translating the Genome. Trends in Genetics 2017;33:642-56. [DOI: 10.1016/j.tig.2017.07.002] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 7.0] [Reference Citation Analysis]
30 Shriberg LD, Strand EA, Fourakis M, Jakielski KJ, Hall SD, Karlsson HB, Mabie HL, McSweeny JL, Tilkens CM, Wilson DL. A Diagnostic Marker to Discriminate Childhood Apraxia of Speech From Speech Delay: I. Development and Description of the Pause Marker. J Speech Lang Hear Res 2017;60:S1096-117. [PMID: 28384779 DOI: 10.1044/2016_JSLHR-S-15-0296] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 6.5] [Reference Citation Analysis]
31 Jiménez-bravo M, Marrero V, Benítez-burraco A. An oscillopathic approach to developmental dyslexia: From genes to speech processing. Behavioural Brain Research 2017;329:84-95. [DOI: 10.1016/j.bbr.2017.03.048] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
32 Jiménez-bravo M, Marrero V, Benítez-burraco A. An oscillopathic approach to developmental dyslexia: from genes to speech processing.. [DOI: 10.1101/108704] [Reference Citation Analysis]
33 Xia W, School of Languages and Literature, Harbin Institute of Technology, Weihai, China, Zhang Z. Language Gene Network Patterns May Facilitate Relationship Setting-up between Language Genotypes and Students' Class-Performance. IJLT 2017. [DOI: 10.18178/ijlt.3.4.259-263] [Reference Citation Analysis]
34 Murphy E, Benítez-Burraco A. Bridging the Gap between Genes and Language Deficits in Schizophrenia: An Oscillopathic Approach. Front Hum Neurosci 2016;10:422. [PMID: 27601987 DOI: 10.3389/fnhum.2016.00422] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 5.1] [Reference Citation Analysis]
35 Martinez-Garay I, Guidi LG, Holloway ZG, Bailey MA, Lyngholm D, Schneider T, Donnison T, Butt SJ, Monaco AP, Molnár Z, Velayos-Baeza A. Normal radial migration and lamination are maintained in dyslexia-susceptibility candidate gene homolog Kiaa0319 knockout mice. Brain Struct Funct 2017;222:1367-84. [PMID: 27510895 DOI: 10.1007/s00429-016-1282-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
36 Murphy E, Benítez-Burraco A. Language deficits in schizophrenia and autism as related oscillatory connectomopathies: An evolutionary account. Neurosci Biobehav Rev 2017;83:742-64. [PMID: 27475632 DOI: 10.1016/j.neubiorev.2016.07.029] [Cited by in Crossref: 32] [Cited by in F6Publishing: 40] [Article Influence: 4.6] [Reference Citation Analysis]
37 Peter B, Wijsman EM, Nato AQ Jr, Matsushita MM, Chapman KL, Stanaway IB, Wolff J, Oda K, Gabo VB, Raskind WH; University of Washington Center for Mendelian Genomics. Genetic Candidate Variants in Two Multigenerational Families with Childhood Apraxia of Speech. PLoS One 2016;11:e0153864. [PMID: 27120335 DOI: 10.1371/journal.pone.0153864] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
38 Wang MS, Zhang RW, Su LY, Li Y, Peng MS, Liu HQ, Zeng L, Irwin DM, Du JL, Yao YG, Wu DD, Zhang YP. Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication. Cell Res 2016;26:556-73. [PMID: 27033669 DOI: 10.1038/cr.2016.44] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
39 Elvevåg B, Cohen AS, Wolters MK, Whalley HC, Gountouna VE, Kuznetsova KA, Watson AR, Nicodemus KK. An examination of the language construct in NIMH's research domain criteria: Time for reconceptualization! Am J Med Genet B Neuropsychiatr Genet 2016;171:904-19. [PMID: 26968151 DOI: 10.1002/ajmg.b.32438] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 2.4] [Reference Citation Analysis]
40 Paracchini S, Diaz R, Stein J. Advances in Dyslexia Genetics—New Insights Into the Role of Brain Asymmetries. Elsevier; 2016. pp. 53-97. [DOI: 10.1016/bs.adgen.2016.08.003] [Cited by in Crossref: 48] [Cited by in F6Publishing: 25] [Article Influence: 6.9] [Reference Citation Analysis]
41 Sollis E, Graham SA, Vino A, Froehlich H, Vreeburg M, Dimitropoulou D, Gilissen C, Pfundt R, Rappold GA, Brunner HG, Deriziotis P, Fisher SE. Identification and functional characterization of de novo FOXP1 variants provides novel insights into the etiology of neurodevelopmental disorder. Hum Mol Genet. 2016;25:546-557. [PMID: 26647308 DOI: 10.1093/hmg/ddv495] [Cited by in Crossref: 50] [Cited by in F6Publishing: 54] [Article Influence: 6.3] [Reference Citation Analysis]
42 Chilosi AM, Lorenzini I, Fiori S, Graziosi V, Rossi G, Pasquariello R, Cipriani P, Cioni G. Behavioral and neurobiological correlates of childhood apraxia of speech in Italian children. Brain Lang 2015;150:177-85. [PMID: 26552038 DOI: 10.1016/j.bandl.2015.10.002] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
43 Fedorenko E, Morgan A, Murray E, Cardinaux A, Mei C, Tager-Flusberg H, Fisher SE, Kanwisher N. A highly penetrant form of childhood apraxia of speech due to deletion of 16p11.2. Eur J Hum Genet 2016;24:302-6. [PMID: 26173965 DOI: 10.1038/ejhg.2015.149] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 5.6] [Reference Citation Analysis]
44 Barnett CP, van Bon BWM. Monogenic and chromosomal causes of isolated speech and language impairment. J Med Genet 2015;52:719-29. [DOI: 10.1136/jmedgenet-2015-103161] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
45 Centanni TM, Sanmann JN, Green JR, Iuzzini-Seigel J, Bartlett C, Sanger WG, Hogan TP. The role of candidate-gene CNTNAP2 in childhood apraxia of speech and specific language impairment. Am J Med Genet B Neuropsychiatr Genet 2015;168:536-43. [PMID: 26097074 DOI: 10.1002/ajmg.b.32325] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 2.6] [Reference Citation Analysis]
46 Zhao YJ, Wang YP, Yang WZ, Sun HW, Ma HW, Zhao YR. CNTNAP2 Is Significantly Associated With Speech Sound Disorder in the Chinese Han Population. J Child Neurol 2015;30:1806-11. [PMID: 25895914 DOI: 10.1177/0883073815581609] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
47 Poot M. Connecting the CNTNAP2 Networks with Neurodevelopmental Disorders. Mol Syndromol 2015;6:7-22. [PMID: 25852443 DOI: 10.1159/000371594] [Cited by in Crossref: 70] [Cited by in F6Publishing: 73] [Article Influence: 8.8] [Reference Citation Analysis]
48 Graham SA, Deriziotis P, Fisher SE. Insights into the genetic foundations of human communication. Neuropsychol Rev 2015;25:3-26. [PMID: 25597031 DOI: 10.1007/s11065-014-9277-2] [Cited by in Crossref: 23] [Cited by in F6Publishing: 15] [Article Influence: 2.9] [Reference Citation Analysis]
49 Hara E, Perez JM, Whitney O, Chen Q, White SA, Wright TF. Neural FoxP2 and FoxP1 expression in the budgerigar, an avian species with adult vocal learning. Behav Brain Res 2015;283:22-9. [PMID: 25601574 DOI: 10.1016/j.bbr.2015.01.017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
50 Reader RH, Covill LE, Nudel R, Newbury DF. Genome-Wide Studies of Specific Language Impairment. Curr Behav Neurosci Rep 2014;1:242-50. [PMID: 25411653 DOI: 10.1007/s40473-014-0024-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
51 van Veen S, Sørensen DM, Holemans T, Holen HW, Palmgren MG, Vangheluwe P. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson's disease and other neurological disorders. Front Mol Neurosci 2014;7:48. [PMID: 24904274 DOI: 10.3389/fnmol.2014.00048] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 6.0] [Reference Citation Analysis]
52 Peter B, Matsushita M, Oda K, Raskind W. De novo microdeletion of BCL11A is associated with severe speech sound disorder. Am J Med Genet A 2014;164A:2091-6. [PMID: 24810580 DOI: 10.1002/ajmg.a.36599] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 5.7] [Reference Citation Analysis]
53 Newbury DF, Monaco AP, Paracchini S. Reading and language disorders: the importance of both quantity and quality. Genes (Basel) 2014;5:285-309. [PMID: 24705331 DOI: 10.3390/genes5020285] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 4.0] [Reference Citation Analysis]