BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chami L, Checler F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer's disease. Mol Neurodegener 2012;7:52. [PMID: 23039869 DOI: 10.1186/1750-1326-7-52] [Cited by in Crossref: 90] [Cited by in F6Publishing: 92] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Tagalakis AD, Lee DHD, Bienemann AS, Zhou H, Munye MM, Saraiva L, Mccarthy D, Du Z, Vink CA, Maeshima R, White EA, Gustafsson K, Hart SL. Multifunctional, self-assembling anionic peptide-lipid nanocomplexes for targeted siRNA delivery. Biomaterials 2014;35:8406-15. [DOI: 10.1016/j.biomaterials.2014.06.003] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 6.5] [Reference Citation Analysis]
2 Dixit S, Fessel JP, Harrison FE. Mitochondrial dysfunction in the APP/PSEN1 mouse model of Alzheimer's disease and a novel protective role for ascorbate. Free Radic Biol Med 2017;112:515-23. [PMID: 28863942 DOI: 10.1016/j.freeradbiomed.2017.08.021] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 5.6] [Reference Citation Analysis]
3 Yashin AI, Wu D, Arbeev K, Bagley O, Akushevich I, Duan M, Yashkin A, Ukraintseva S. Interplay between stress-related genes may influence Alzheimer's disease development: The results of genetic interaction analyses of human data. Mech Ageing Dev 2021;196:111477. [PMID: 33798591 DOI: 10.1016/j.mad.2021.111477] [Reference Citation Analysis]
4 Tan SH, Karri V, Tay NWR, Chang KH, Ah HY, Ng PQ, Ho HS, Keh HW, Candasamy M. Emerging pathways to neurodegeneration: Dissecting the critical molecular mechanisms in Alzheimer's disease, Parkinson's disease. Biomed Pharmacother 2019;111:765-77. [PMID: 30612001 DOI: 10.1016/j.biopha.2018.12.101] [Cited by in Crossref: 33] [Cited by in F6Publishing: 22] [Article Influence: 11.0] [Reference Citation Analysis]
5 Li KY, Xiang XJ, Song L, Chen J, Luo B, Wen QX, Zhong BR, Zhou GF, Deng XJ, Ma YL, Hu LT, Chen GJ. Mitochondrial TXN2 attenuates amyloidogenesis via selective inhibition of BACE1 expression. J Neurochem 2021;157:1351-65. [PMID: 32920833 DOI: 10.1111/jnc.15184] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Sinha M, Bir A, Banerjee A, Bhowmick P, Chakrabarti S. Multiple mechanisms of age-dependent accumulation of amyloid beta protein in rat brain: Prevention by dietary supplementation with N-acetylcysteine, α-lipoic acid and α-tocopherol. Neurochemistry International 2016;95:92-9. [DOI: 10.1016/j.neuint.2015.10.003] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
7 Lafon PA, Wang Y, Arango-Lievano M, Torrent J, Salvador-Prince L, Mansuy M, Mestre-Francès N, Givalois L, Liu J, Mercader JV, Jeanneteau F, Desrumaux C, Perrier V. Fungicide Residues Exposure and β-amyloid Aggregation in a Mouse Model of Alzheimer's Disease. Environ Health Perspect 2020;128:17011. [PMID: 31939705 DOI: 10.1289/EHP5550] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
8 Zhao HY, Wu HJ, He JL, Zhuang JH, Liu ZY, Huang LQ, Zhao ZX. Chronic Sleep Restriction Induces Cognitive Deficits and Cortical Beta-Amyloid Deposition in Mice via BACE1-Antisense Activation. CNS Neurosci Ther 2017;23:233-40. [PMID: 28145081 DOI: 10.1111/cns.12667] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 4.6] [Reference Citation Analysis]
9 Vassar R, Kuhn PH, Haass C, Kennedy ME, Rajendran L, Wong PC, Lichtenthaler SF. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem 2014;130:4-28. [PMID: 24646365 DOI: 10.1111/jnc.12715] [Cited by in Crossref: 218] [Cited by in F6Publishing: 210] [Article Influence: 27.3] [Reference Citation Analysis]
10 Moussa CE. Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer's disease. Expert Opin Investig Drugs 2017;26:1131-6. [PMID: 28817311 DOI: 10.1080/13543784.2017.1369527] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 6.2] [Reference Citation Analysis]
11 Kim W, Ma L, Lomoio S, Willen R, Lombardo S, Dong J, Haydon PG, Tesco G. BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice. Mol Neurodegener 2018;13:6. [PMID: 29391027 DOI: 10.1186/s13024-018-0239-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
12 Chanana N, Pati U. ORP150-CHIP chaperone antagonism control BACE1-mediated amyloid processing. J Cell Biochem 2018;119:4615-26. [PMID: 29266373 DOI: 10.1002/jcb.26630] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
13 Evin G. Future Therapeutics in Alzheimer's Disease: Development Status of BACE Inhibitors. BioDrugs 2016;30:173-94. [PMID: 27023706 DOI: 10.1007/s40259-016-0168-3] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 5.4] [Reference Citation Analysis]
14 Banerjee P, Sahoo A, Anand S, Bir A, Chakrabarti S. The Oral Iron Chelator, Deferasirox, Reverses the Age-Dependent Alterations in Iron and Amyloid-β Homeostasis in Rat Brain: Implications in the Therapy of Alzheimer's Disease. J Alzheimers Dis 2016;49:681-93. [PMID: 26484920 DOI: 10.3233/JAD-150514] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 2.2] [Reference Citation Analysis]
15 Liu CS, Chau SA, Ruthirakuhan M, Lanctôt KL, Herrmann N. Cannabinoids for the Treatment of Agitation and Aggression in Alzheimer’s Disease. CNS Drugs 2015;29:615-23. [DOI: 10.1007/s40263-015-0270-y] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 4.6] [Reference Citation Analysis]
16 Vingtdeux V, Tanis JE, Chandakkar P, Zhao H, Dreses-Werringloer U, Campagne F, Foskett JK, Marambaud P. Effect of the CALHM1 G330D and R154H human variants on the control of cytosolic Ca2+ and Aβ levels. PLoS One 2014;9:e112484. [PMID: 25386646 DOI: 10.1371/journal.pone.0112484] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.1] [Reference Citation Analysis]
17 Hou P, Liu G, Zhao Y, Shi Z, Zheng Q, Bu G, Xu H, Zhang YW. Role of copper and the copper-related protein CUTA in mediating APP processing and Aβ generation. Neurobiol Aging 2015;36:1310-5. [PMID: 25557959 DOI: 10.1016/j.neurobiolaging.2014.12.005] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
18 Bourdet I, Lampin-Saint-Amaux A, Preat T, Goguel V. Amyloid-β Peptide Exacerbates the Memory Deficit Caused by Amyloid Precursor Protein Loss-of-Function in Drosophila. PLoS One 2015;10:e0135741. [PMID: 26274614 DOI: 10.1371/journal.pone.0135741] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
19 Yin Z, Geng X, Zhang Z, Wang Y, Gao X. Rhein Relieves Oxidative Stress in an Aβ1-42 Oligomer-Burdened Neuron Model by Activating the SIRT1/PGC-1α-Regulated Mitochondrial Biogenesis. Front Pharmacol 2021;12:746711. [PMID: 34566664 DOI: 10.3389/fphar.2021.746711] [Reference Citation Analysis]
20 Hamezah HS, Durani LW, Yanagisawa D, Ibrahim NF, Aizat WM, Makpol S, Wan Ngah WZ, Damanhuri HA, Tooyama I. Modulation of Proteome Profile in AβPP/PS1 Mice Hippocampus, Medial Prefrontal Cortex, and Striatum by Palm Oil Derived Tocotrienol-Rich Fraction. J Alzheimers Dis 2019;72:229-46. [PMID: 31594216 DOI: 10.3233/JAD-181171] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Hussain AA, Lee Y, Marshall J. Understanding the complexity of the matrix metalloproteinase system and its relevance to age-related diseases: Age-related macular degeneration and Alzheimer's disease. Prog Retin Eye Res 2020;74:100775. [PMID: 31473329 DOI: 10.1016/j.preteyeres.2019.100775] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
22 Xie Z, Meng J, Kong W, Wu Z, Lan F, Narengaowa, Hayashi Y, Yang Q, Bai Z, Nakanishi H, Qing H, Ni J. Microglial cathepsin E plays a role in neuroinflammation and amyloid β production in Alzheimer's disease. Aging Cell 2022;:e13565. [PMID: 35181976 DOI: 10.1111/acel.13565] [Reference Citation Analysis]
23 Hao C, Wang W, Wang S, Zhang L, Guo Y. An Overview of the Protective Effects of Chitosan and Acetylated Chitosan Oligosaccharides against Neuronal Disorders. Mar Drugs 2017;15:E89. [PMID: 28333077 DOI: 10.3390/md15040089] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
24 Sastre M, Katsouri L, Birch A, Renziehausen A, Dexter DT, Crichton RR, Ward RJ. Neuroinflammation in Alzheimer's, Parkinson's and Huntington's Diseases. In: Woodroofe N, Amor S, editors. Neuroinflammation and CNS Disorders. Chichester: John Wiley & Sons, Ltd; 2014. pp. 111-50. [DOI: 10.1002/9781118406557.ch6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Plácido AI, Oliveira CR, Moreira PI, Pereira CMF. Enhanced Amyloidogenic Processing of Amyloid Precursor Protein and Cell Death Under Prolonged Endoplasmic Reticulum Stress in Brain Endothelial Cells. Mol Neurobiol 2015;51:571-90. [DOI: 10.1007/s12035-014-8819-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
26 Chen XF, Zhang YW, Xu H, Bu G. Transcriptional regulation and its misregulation in Alzheimer's disease. Mol Brain 2013;6:44. [PMID: 24144318 DOI: 10.1186/1756-6606-6-44] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 3.6] [Reference Citation Analysis]
27 Tan JL, Li QX, Ciccotosto GD, Crouch PJ, Culvenor JG, White AR, Evin G. Mild oxidative stress induces redistribution of BACE1 in non-apoptotic conditions and promotes the amyloidogenic processing of Alzheimer's disease amyloid precursor protein. PLoS One 2013;8:e61246. [PMID: 23613819 DOI: 10.1371/journal.pone.0061246] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 4.3] [Reference Citation Analysis]
28 Py NA, Bonnet AE, Bernard A, Marchalant Y, Charrat E, Checler F, Khrestchatisky M, Baranger K, Rivera S. Differential spatio-temporal regulation of MMPs in the 5xFAD mouse model of Alzheimer's disease: evidence for a pro-amyloidogenic role of MT1-MMP. Front Aging Neurosci 2014;6:247. [PMID: 25278878 DOI: 10.3389/fnagi.2014.00247] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 4.3] [Reference Citation Analysis]
29 Michelon C, Michels M, Abatti M, Vieira A, Borges H, Dominguini D, Barichello T, Dal-pizzol F. The Role of Secretase Pathway in Long-term Brain Inflammation and Cognitive Impairment in an Animal Model of Severe Sepsis. Mol Neurobiol 2020;57:1159-69. [DOI: 10.1007/s12035-019-01808-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
30 Yan XX, Ma C, Gai WP, Cai H, Luo XG. Can BACE1 inhibition mitigate early axonal pathology in neurological diseases? J Alzheimers Dis 2014;38:705-18. [PMID: 24081378 DOI: 10.3233/JAD-131400] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 1.9] [Reference Citation Analysis]
31 Zhu BL, Long Y, Luo W, Yan Z, Lai YJ, Zhao LG, Zhou WH, Wang YJ, Shen LL, Liu L, Deng XJ, Wang XF, Sun F, Chen GJ. MMP13 inhibition rescues cognitive decline in Alzheimer transgenic mice via BACE1 regulation. Brain 2019;142:176-92. [PMID: 30596903 DOI: 10.1093/brain/awy305] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 7.3] [Reference Citation Analysis]
32 Nampoothiri SS, Rajanikant GK. miR-9 Upregulation Integrates Post-ischemic Neuronal Survival and Regeneration In Vitro. Cell Mol Neurobiol 2019;39:223-40. [PMID: 30539420 DOI: 10.1007/s10571-018-0642-1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
33 Jiang S, Li Y, Zhang C, Zhao Y, Bu G, Xu H, Zhang YW. M1 muscarinic acetylcholine receptor in Alzheimer's disease. Neurosci Bull 2014;30:295-307. [PMID: 24590577 DOI: 10.1007/s12264-013-1406-z] [Cited by in Crossref: 74] [Cited by in F6Publishing: 69] [Article Influence: 9.3] [Reference Citation Analysis]
34 Mahaman YAR, Huang F, Kessete Afewerky H, Maibouge TMS, Ghose B, Wang X. Involvement of calpain in the neuropathogenesis of Alzheimer's disease. Med Res Rev 2019;39:608-30. [PMID: 30260518 DOI: 10.1002/med.21534] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
35 Del Prete D, Checler F, Chami M. Ryanodine receptors: physiological function and deregulation in Alzheimer disease. Mol Neurodegener 2014;9:21. [PMID: 24902695 DOI: 10.1186/1750-1326-9-21] [Cited by in Crossref: 85] [Cited by in F6Publishing: 87] [Article Influence: 10.6] [Reference Citation Analysis]
36 Kandalepas PC, Vassar R. The normal and pathologic roles of the Alzheimer's β-secretase, BACE1. Curr Alzheimer Res 2014;11:441-9. [PMID: 24893886 DOI: 10.2174/1567205011666140604122059] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 3.9] [Reference Citation Analysis]
37 Chami M, Checler F. Alterations of the Endoplasmic Reticulum (ER) Calcium Signaling Molecular Components in Alzheimer's Disease. Cells 2020;9:E2577. [PMID: 33271984 DOI: 10.3390/cells9122577] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
38 Kim SH, Choi KY, Park Y, McLean C, Park J, Lee JH, Lee KH, Kim BC, Huh YH, Lee KH, Song WK. Enhanced Expression of microRNA-1273g-3p Contributes to Alzheimer's Disease Pathogenesis by Regulating the Expression of Mitochondrial Genes. Cells 2021;10:2697. [PMID: 34685681 DOI: 10.3390/cells10102697] [Reference Citation Analysis]
39 Nuzziello N, Liguori M. The MicroRNA Centrism in the Orchestration of Neuroinflammation in Neurodegenerative Diseases. Cells 2019;8:E1193. [PMID: 31581723 DOI: 10.3390/cells8101193] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
40 Araki W. Post-translational regulation of the β-secretase BACE1. Brain Res Bull 2016;126:170-7. [PMID: 27086128 DOI: 10.1016/j.brainresbull.2016.04.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
41 Roberts HL, Schneider BL, Brown DR. α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP. PLoS One 2017;12:e0171925. [PMID: 28187176 DOI: 10.1371/journal.pone.0171925] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
42 Kim JE, Park JJ, Lee MR, Choi JY, Song BR, Park JW, Kang MJ, Son HJ, Hong JT, Hwang DY. Constipation in Tg2576 mice model for Alzheimer's disease associated with dysregulation of mechanism involving the mAChR signaling pathway and ER stress response. PLoS One 2019;14:e0215205. [PMID: 30978260 DOI: 10.1371/journal.pone.0215205] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
43 Evin G, Hince C. BACE1 as a therapeutic target in Alzheimer's disease: rationale and current status. Drugs Aging 2013;30:755-64. [PMID: 23842796 DOI: 10.1007/s40266-013-0099-3] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
44 Do J, Kim N, Jeon SH, Gee MS, Ju YJ, Kim JH, Oh MS, Lee JK. Trans-Cinnamaldehyde Alleviates Amyloid-Beta Pathogenesis via the SIRT1-PGC1α-PPARγ Pathway in 5XFAD Transgenic Mice. Int J Mol Sci 2020;21:E4492. [PMID: 32599846 DOI: 10.3390/ijms21124492] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
45 Abbasowa L, Heegaard NH. A systematic review of amyloid-β peptides as putative mediators of the association between affective disorders and Alzheimer׳s disease. J Affect Disord 2014;168:167-83. [PMID: 25058309 DOI: 10.1016/j.jad.2014.06.050] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
46 Li H, Ruberu K, Muñoz SS, Jenner AM, Spiro A, Zhao H, Rassart E, Sanchez D, Ganfornina MD, Karl T, Garner B. Apolipoprotein D modulates amyloid pathology in APP/PS1 Alzheimer's disease mice. Neurobiol Aging 2015;36:1820-33. [PMID: 25784209 DOI: 10.1016/j.neurobiolaging.2015.02.010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
47 Vassar R, Zheng H. Molecular neurodegeneration: basic biology and disease pathways. Mol Neurodegener 2014;9:34. [PMID: 25248568 DOI: 10.1186/1750-1326-9-34] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
48 Lazic D, Sagare AP, Nikolakopoulou AM, Griffin JH, Vassar R, Zlokovic BV. 3K3A-activated protein C blocks amyloidogenic BACE1 pathway and improves functional outcome in mice. J Exp Med 2019;216:279-93. [PMID: 30647119 DOI: 10.1084/jem.20181035] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 8.3] [Reference Citation Analysis]
49 Mahaman YAR, Huang F, Wu M, Wang Y, Wei Z, Bao J, Salissou MTM, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Chen D, Wang X. Moringa Oleifera Alleviates Homocysteine-Induced Alzheimer's Disease-Like Pathology and Cognitive Impairments. J Alzheimers Dis 2018;63:1141-59. [PMID: 29710724 DOI: 10.3233/JAD-180091] [Cited by in Crossref: 16] [Cited by in F6Publishing: 7] [Article Influence: 5.3] [Reference Citation Analysis]
50 Liu CC, Tsai CW, Deak F, Rogers J, Penuliar M, Sung YM, Maher JN, Fu Y, Li X, Xu H, Estus S, Hoe HS, Fryer JD, Kanekiyo T, Bu G. Deficiency in LRP6-mediated Wnt signaling contributes to synaptic abnormalities and amyloid pathology in Alzheimer's disease. Neuron 2014;84:63-77. [PMID: 25242217 DOI: 10.1016/j.neuron.2014.08.048] [Cited by in F6Publishing: 108] [Reference Citation Analysis]
51 Du Y, Zhao Y, Li C, Zheng Q, Tian J, Li Z, Huang TY, Zhang W, Xu H. Inhibition of PKCδ reduces amyloid-β levels and reverses Alzheimer disease phenotypes. J Exp Med 2018;215:1665-77. [PMID: 29739836 DOI: 10.1084/jem.20171193] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
52 Evin G, Barakat A. Critical analysis of the use of β-site amyloid precursor protein-cleaving enzyme 1 inhibitors in the treatment of Alzheimer's disease. Degener Neurol Neuromuscul Dis 2014;4:1-19. [PMID: 32669897 DOI: 10.2147/DNND.S41056] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
53 Hartmann S, Zheng F, Kyncl MC, Karch S, Voelkl K, Zott B, D'Avanzo C, Lomoio S, Tesco G, Kim DY, Alzheimer C, Huth T. β-Secretase BACE1 Promotes Surface Expression and Function of Kv3.4 at Hippocampal Mossy Fiber Synapses. J Neurosci 2018;38:3480-94. [PMID: 29507146 DOI: 10.1523/JNEUROSCI.2643-17.2018] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
54 Salissou MTM, Mahaman YAR, Zhu F, Huang F, Wang Y, Xu Z, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Wang X. Methanolic extract of Tamarix Gallica attenuates hyperhomocysteinemia induced AD-like pathology and cognitive impairments in rats. Aging (Albany NY) 2018;10:3229-48. [PMID: 30425189 DOI: 10.18632/aging.101627] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
55 Brambillaa A, Lonati E, Milani C, Rizzo AM, Farina F, Botto L, Masserini M, Palestini P, Bulbarelli A. Ischemic conditions and ß-secretase activation: The impact of membrane cholesterol enrichment as triggering factor in rat brain endothelial cells. Int J Biochem Cell Biol 2015;69:95-104. [PMID: 27022655 DOI: 10.1016/j.biocel.2015.10.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
56 Wang D, Fei Z, Luo S, Wang H. MiR-335-5p Inhibits β-Amyloid (Aβ) Accumulation to Attenuate Cognitive Deficits Through Targeting c-jun-N-terminal Kinase 3 in Alzheimer's Disease. Curr Neurovasc Res 2020;17:93-101. [PMID: 32003672 DOI: 10.2174/1567202617666200128141938] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
57 Takahashi M, Kizuka Y, Ohtsubo K, Gu J, Taniguchi N. Disease-associated glycans on cell surface proteins. Mol Aspects Med 2016;51:56-70. [PMID: 27131428 DOI: 10.1016/j.mam.2016.04.008] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
58 Nishioka H, Tooi N, Isobe T, Nakatsuji N, Aiba K. BMS-708163 and Nilotinib restore synaptic dysfunction in human embryonic stem cell-derived Alzheimer's disease models. Sci Rep 2016;6:33427. [PMID: 27641902 DOI: 10.1038/srep33427] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
59 Gu MY, Chun YS, Zhao D, Ryu SY, Yang HO. Glycyrrhiza uralensis and Semilicoisoflavone B Reduce Aβ Secretion by Increasing PPARγ Expression and Inhibiting STAT3 Phosphorylation to Inhibit BACE1 Expression. Mol Nutr Food Res 2018;62:e1700633. [PMID: 29143445 DOI: 10.1002/mnfr.201700633] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
60 Harris SA, Harris EA. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer's Disease. Front Aging Neurosci 2018;10:48. [PMID: 29559905 DOI: 10.3389/fnagi.2018.00048] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 16.8] [Reference Citation Analysis]
61 Qin X, Wang Y, Paudel HK. Early Growth Response 1 (Egr-1) Is a Transcriptional Activator of β-Secretase 1 (BACE-1) in the Brain. J Biol Chem 2016;291:22276-87. [PMID: 27576688 DOI: 10.1074/jbc.M116.738849] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
62 Kim J, Yoon H, Chung DE, Brown JL, Belmonte KC, Kim J. miR-186 is decreased in aged brain and suppresses BACE1 expression. J Neurochem 2016;137:436-45. [PMID: 26710318 DOI: 10.1111/jnc.13507] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 7.7] [Reference Citation Analysis]
63 Shanmuganathan B, Sathya S, Balasubramaniam B, Balamurugan K, Devi KP. Amyloid-β induced neuropathological actions are suppressed by Padina gymnospora (Phaeophyceae) and its active constituent α-bisabolol in Neuro2a cells and transgenic Caenorhabditis elegans Alzheimer's model. Nitric Oxide 2019;91:52-66. [PMID: 31362072 DOI: 10.1016/j.niox.2019.07.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
64 Meakin PJ, Jalicy SM, Montagut G, Allsop DJP, Cavellini DL, Irvine SW, McGinley C, Liddell MK, McNeilly AD, Parmionova K, Liu YR, Bailey CLS, Dale JK, Heisler LK, McCrimmon RJ, Ashford MLJ. Bace1-dependent amyloid processing regulates hypothalamic leptin sensitivity in obese mice. Sci Rep 2018;8:55. [PMID: 29311632 DOI: 10.1038/s41598-017-18388-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
65 Sharman MJ, Verdile G, Kirubakaran S, Parenti C, Singh A, Watt G, Karl T, Chang D, Li CG, Münch G. Targeting Inflammatory Pathways in Alzheimer’s Disease: A Focus on Natural Products and Phytomedicines. CNS Drugs 2019;33:457-80. [DOI: 10.1007/s40263-019-00619-1] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
66 Ashraf J, Ahmad J, Ali A, Ul-Haq Z. Analyzing the Behavior of Neuronal Pathways in Alzheimer's Disease Using Petri Net Modeling Approach. Front Neuroinform 2018;12:26. [PMID: 29875647 DOI: 10.3389/fninf.2018.00026] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
67 Sadleir KR, Eimer WA, Kaufman RJ, Osten P, Vassar R. Genetic inhibition of phosphorylation of the translation initiation factor eIF2α does not block Aβ-dependent elevation of BACE1 and APP levels or reduce amyloid pathology in a mouse model of Alzheimer's disease. PLoS One 2014;9:e101643. [PMID: 24992504 DOI: 10.1371/journal.pone.0101643] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
68 Jiao SS, Yao XQ, Liu YH, Wang QH, Zeng F, Lu JJ, Liu J, Zhu C, Shen LL, Liu CH, Wang YR, Zeng GH, Parikh A, Chen J, Liang CR, Xiang Y, Bu XL, Deng J, Li J, Xu J, Zeng YQ, Xu X, Xu HW, Zhong JH, Zhou HD, Zhou XF, Wang YJ. Edaravone alleviates Alzheimer's disease-type pathologies and cognitive deficits. Proc Natl Acad Sci U S A 2015;112:5225-30. [PMID: 25847999 DOI: 10.1073/pnas.1422998112] [Cited by in Crossref: 74] [Cited by in F6Publishing: 69] [Article Influence: 10.6] [Reference Citation Analysis]
69 Chen FZ, Zhao Y, Chen HZ. MicroRNA-98 reduces amyloid β-protein production and improves oxidative stress and mitochondrial dysfunction through the Notch signaling pathway via HEY2 in Alzheimer's disease mice. Int J Mol Med 2019;43:91-102. [PMID: 30365070 DOI: 10.3892/ijmm.2018.3957] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
70 Ganguly G, Chakrabarti S, Chatterjee U, Saso L. Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer's disease and Parkinson's disease. Drug Des Devel Ther 2017;11:797-810. [PMID: 28352155 DOI: 10.2147/DDDT.S130514] [Cited by in Crossref: 120] [Cited by in F6Publishing: 74] [Article Influence: 24.0] [Reference Citation Analysis]
71 Allen HB. Alzheimer's Disease: Assessing the Role of Spirochetes, Biofilms, the Immune System, and Amyloid-β with Regard to Potential Treatment and Prevention. J Alzheimers Dis 2016;53:1271-6. [PMID: 27372648 DOI: 10.3233/JAD-160388] [Cited by in Crossref: 27] [Cited by in F6Publishing: 17] [Article Influence: 6.8] [Reference Citation Analysis]
72 Ohno M. Alzheimer's therapy targeting the β-secretase enzyme BACE1: Benefits and potential limitations from the perspective of animal model studies. Brain Res Bull 2016;126:183-98. [PMID: 27093940 DOI: 10.1016/j.brainresbull.2016.04.007] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 4.5] [Reference Citation Analysis]
73 Bajaj S, Jain S, Vyas P, Bawa S, Vohora D. The role of endocannabinoid pathway in the neuropathology of Alzheimer's disease: Can the inhibitors of MAGL and FAAH prove to be potential therapeutic targets against the cognitive impairment associated with Alzheimer's disease? Brain Res Bull 2021;174:305-22. [PMID: 34217798 DOI: 10.1016/j.brainresbull.2021.06.022] [Reference Citation Analysis]
74 Tang Y, Min Z, Xiang XJ, Liu L, Ma YL, Zhu BL, Song L, Tang J, Deng XJ, Yan Z, Chen GJ. Estrogen-related receptor alpha is involved in Alzheimer's disease-like pathology.Exp Neurol. 2018;305:89-96. [PMID: 29641978 DOI: 10.1016/j.expneurol.2018.04.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
75 Montaser A, Huttunen J, Ibrahim SA, Huttunen KM. Astrocyte-Targeted Transporter-Utilizing Derivatives of Ferulic Acid Can Have Multifunctional Effects Ameliorating Inflammation and Oxidative Stress in the Brain. Oxid Med Cell Longev 2019;2019:3528148. [PMID: 31814871 DOI: 10.1155/2019/3528148] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
76 Frontiñán-Rubio J, Sancho-Bielsa FJ, Peinado JR, LaFerla FM, Giménez-Llort L, Durán-Prado M, Alcain FJ. Sex-dependent co-occurrence of hypoxia and β-amyloid plaques in hippocampus and entorhinal cortex is reversed by long-term treatment with ubiquinol and ascorbic acid in the 3 × Tg-AD mouse model of Alzheimer's disease. Mol Cell Neurosci 2018;92:67-81. [PMID: 29953929 DOI: 10.1016/j.mcn.2018.06.005] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
77 Petrov D, Pedrós I, Artiach G, Sureda FX, Barroso E, Pallàs M, Casadesús G, Beas-Zarate C, Carro E, Ferrer I, Vazquez-Carrera M, Folch J, Camins A. High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta 2015;1852:1687-99. [PMID: 26003667 DOI: 10.1016/j.bbadis.2015.05.004] [Cited by in Crossref: 90] [Cited by in F6Publishing: 91] [Article Influence: 12.9] [Reference Citation Analysis]
78 Wang L, Liu J, Wang Q, Jiang H, Zeng L, Li Z, Liu R. MicroRNA-200a-3p Mediates Neuroprotection in Alzheimer-Related Deficits and Attenuates Amyloid-Beta Overproduction and Tau Hyperphosphorylation via Coregulating BACE1 and PRKACB. Front Pharmacol 2019;10:806. [PMID: 31379578 DOI: 10.3389/fphar.2019.00806] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
79 Yan L, He X, Jin Y, Wang J, Liang F, Pei R, Li P, Wang Y, Su W. Modulation of the Aβ-Peptide-Aggregation Pathway by Active Compounds From Platycladus orientalis Seed Extract in Alzheimer's Disease Models. Front Aging Neurosci 2020;12:207. [PMID: 32922281 DOI: 10.3389/fnagi.2020.00207] [Reference Citation Analysis]
80 Wan L, Zhang Q, Luo H, Xu Z, Huang S, Yang F, Liu Y, Mahaman YAR, Ke D, Wang Q, Liu R, Wang JZ, Shu X, Wang X. Codonopsis pilosula polysaccharide attenuates Aβ toxicity and cognitive defects in APP/PS1 mice. Aging (Albany NY) 2020;12:13422-36. [PMID: 32652518 DOI: 10.18632/aging.103445] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
81 Gerakis Y, Dunys J, Bauer C, Checler F. Aβ42 oligomers modulate β-secretase through an XBP-1s-dependent pathway involving HRD1. Sci Rep 2016;6:37436. [PMID: 27853315 DOI: 10.1038/srep37436] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
82 Banerjee P, Sahoo A, Anand S, Ganguly A, Righi G, Bovicelli P, Saso L, Chakrabarti S. Multiple mechanisms of iron-induced amyloid beta-peptide accumulation in SHSY5Y cells: protective action of negletein. Neuromolecular Med 2014;16:787-98. [PMID: 25249289 DOI: 10.1007/s12017-014-8328-4] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
83 Hussain AA, Lee Y, Zhang JJ, Francis PT, Marshall J. Disturbed Matrix Metalloproteinase Pathway in Both Age-Related Macular Degeneration and Alzheimer's Disease. J Neurodegener Dis 2017;2017:4810232. [PMID: 28197357 DOI: 10.1155/2017/4810232] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
84 Bussiere R, Oulès B, Mary A, Vaillant-Beuchot L, Martin C, El Manaa W, Vallée D, Duplan E, Paterlini-Bréchot P, Alves Da Costa C, Checler F, Chami M. Upregulation of the Sarco-Endoplasmic Reticulum Calcium ATPase 1 Truncated Isoform Plays a Pathogenic Role in Alzheimer's Disease. Cells 2019;8:E1539. [PMID: 31795302 DOI: 10.3390/cells8121539] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
85 Schnöder L, Hao W, Qin Y, Liu S, Tomic I, Liu X, Fassbender K, Liu Y. Deficiency of Neuronal p38α MAPK Attenuates Amyloid Pathology in Alzheimer Disease Mouse and Cell Models through Facilitating Lysosomal Degradation of BACE1. J Biol Chem 2016;291:2067-79. [PMID: 26663083 DOI: 10.1074/jbc.M115.695916] [Cited by in Crossref: 59] [Cited by in F6Publishing: 39] [Article Influence: 8.4] [Reference Citation Analysis]
86 Hernández-Zimbrón LF, Rivas-Arancibia S. Syntaxin 5 Overexpression and β-Amyloid 1-42 Accumulation in Endoplasmic Reticulum of Hippocampal Cells in Rat Brain Induced by Ozone Exposure. Biomed Res Int 2016;2016:2125643. [PMID: 27366738 DOI: 10.1155/2016/2125643] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
87 Harris SA, Harris EA. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer's Disease. J Alzheimers Dis 2015;48:319-53. [PMID: 26401998 DOI: 10.3233/JAD-142853] [Cited by in Crossref: 125] [Cited by in F6Publishing: 76] [Article Influence: 20.8] [Reference Citation Analysis]
88 Zhang L, Zhao P, Yue C, Jin Z, Liu Q, Du X, He Q. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer's disease. Biomaterials 2019;197:393-404. [DOI: 10.1016/j.biomaterials.2019.01.037] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 13.0] [Reference Citation Analysis]
89 Zhang X, Li Y, Xu H, Zhang YW. The γ-secretase complex: from structure to function. Front Cell Neurosci. 2014;8:427. [PMID: 25565961 DOI: 10.3389/fncel.2014.00427] [Cited by in Crossref: 48] [Cited by in F6Publishing: 52] [Article Influence: 6.0] [Reference Citation Analysis]
90 Lee HJ, Ryu JM, Jung YH, Lee SJ, Kim JY, Lee SH, Hwang IK, Seong JK, Han HJ. High glucose upregulates BACE1-mediated Aβ production through ROS-dependent HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization in SK-N-MC cells. Sci Rep 2016;6:36746. [PMID: 27829662 DOI: 10.1038/srep36746] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 6.2] [Reference Citation Analysis]
91 Hu X, Hu J, Dai L, Trapp B, Yan R. Axonal and Schwann cell BACE1 is equally required for remyelination of peripheral nerves. J Neurosci 2015;35:3806-14. [PMID: 25740511 DOI: 10.1523/JNEUROSCI.5207-14.2015] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
92 Deschênes M, Chabot B. The emerging role of alternative splicing in senescence and aging. Aging Cell 2017;16:918-33. [PMID: 28703423 DOI: 10.1111/acel.12646] [Cited by in Crossref: 69] [Cited by in F6Publishing: 62] [Article Influence: 13.8] [Reference Citation Analysis]
93 Xiang X, Song L, Deng X, Tang Y, Min Z, Luo B, Wen Q, Li K, Chen J, Ma Y, Zhu B, Yan Z, Chen G. Mitochondrial methionine sulfoxide reductase B2 links oxidative stress to Alzheimer's disease-like pathology. Experimental Neurology 2019;318:145-56. [DOI: 10.1016/j.expneurol.2019.05.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
94 Zhang W, Bai SS, Zhang Q, Shi RL, Wang HC, Liu YC, Ni TJ, Wu Y, Yao ZY, Sun Y, Wang MY. Physalin B reduces Aβ secretion through down-regulation of BACE1 expression by activating FoxO1 and inhibiting STAT3 phosphorylation. Chin J Nat Med 2021;19:732-40. [PMID: 34688463 DOI: 10.1016/S1875-5364(21)60090-0] [Reference Citation Analysis]
95 Bajaj S, Zameer S, Jain S, Yadav V, Vohora D. Effect of the MAGL/FAAH Dual Inhibitor JZL-195 on Streptozotocin-Induced Alzheimer's Disease-like Sporadic Dementia in Mice with an Emphasis on Aβ, HSP-70, Neuroinflammation, and Oxidative Stress. ACS Chem Neurosci 2022. [PMID: 35316021 DOI: 10.1021/acschemneuro.1c00699] [Reference Citation Analysis]
96 Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer's disease. Alzheimers Res Ther 2014;6:89. [PMID: 25621019 DOI: 10.1186/s13195-014-0089-7] [Cited by in Crossref: 250] [Cited by in F6Publishing: 229] [Article Influence: 31.3] [Reference Citation Analysis]