1 |
Ng WT, But B, Choi HC, de Bree R, Lee AW, Lee VH, López F, Mäkitie AA, Rodrigo JP, Saba NF, Tsang RK, Ferlito A. Application of Artificial Intelligence for Nasopharyngeal Carcinoma Management – A Systematic Review. CMAR 2022;Volume 14:339-66. [DOI: 10.2147/cmar.s341583] [Reference Citation Analysis]
|
2 |
Zhao X, Liang YJ, Zhang X, Wen DX, Fan W, Tang LQ, Dong D, Tian J, Mai HQ. Deep learning signatures reveal multiscale intratumor heterogeneity associated with biological functions and survival in recurrent nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 2022. [PMID: 35471254 DOI: 10.1007/s00259-022-05793-x] [Reference Citation Analysis]
|
3 |
Guiot J, Vaidyanathan A, Deprez L, Zerka F, Danthine D, Frix AN, Lambin P, Bottari F, Tsoutzidis N, Miraglio B, Walsh S, Vos W, Hustinx R, Ferreira M, Lovinfosse P, Leijenaar RTH. A review in radiomics: Making personalized medicine a reality via routine imaging. Med Res Rev 2021. [PMID: 34309893 DOI: 10.1002/med.21846] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
4 |
Li S, Deng YQ, Zhu ZL, Hua HL, Tao ZZ. A Comprehensive Review on Radiomics and Deep Learning for Nasopharyngeal Carcinoma Imaging. Diagnostics (Basel) 2021;11:1523. [PMID: 34573865 DOI: 10.3390/diagnostics11091523] [Reference Citation Analysis]
|
5 |
Yan Y, Liu Y, Tao J, Li Z, Qu X, Guo J, Xian J. Preoperative Prediction of Malignant Transformation of Sinonasal Inverted Papilloma Using MR Radiomics. Front Oncol 2022;12:870544. [DOI: 10.3389/fonc.2022.870544] [Reference Citation Analysis]
|