BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Watson DE, Hunziker R, Wikswo JP. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Exp Biol Med (Maywood) 2017;242:1559-72. [PMID: 29065799 DOI: 10.1177/1535370217732765] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Lebre F, Chatterjee N, Costa S, Fernández-de-gortari E, Lopes C, Meneses J, Ortiz L, Ribeiro AR, Vilas-boas V, Alfaro-moreno E. Nanosafety: An Evolving Concept to Bring the Safest Possible Nanomaterials to Society and Environment. Nanomaterials 2022;12:1810. [DOI: 10.3390/nano12111810] [Reference Citation Analysis]
2 Ronaldson-Bouchard K, Baldassarri I, Tavakol DN, Graney PL, Samaritano M, Cimetta E, Vunjak-Novakovic G. Engineering complexity in human tissue models of cancer. Adv Drug Deliv Rev 2022;184:114181. [PMID: 35278521 DOI: 10.1016/j.addr.2022.114181] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Cook SR, Musgrove HB, Throckmorton AL, Pompano RR. Microscale impeller pump for recirculating flow in organs-on-chip and microreactors. Lab Chip 2022. [PMID: 34988560 DOI: 10.1039/d1lc01081f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
4 Caballero D, Reis RL, Kundu SC. Current Trends in Microfluidics and Biosensors for Cancer Research Applications. Microfluidics and Biosensors in Cancer Research 2022. [DOI: 10.1007/978-3-031-04039-9_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Griffin MD, Abbott RD. Bioreactors and microphysiological systems for adipose-based pharmacologic screening. Scientific Principles of Adipose Stem Cells 2022. [DOI: 10.1016/b978-0-12-819376-1.00011-1] [Reference Citation Analysis]
6 Frazier TP, Hamel K, Wu X, Rogers E, Lassiter H, Robinson J, Mohiuddin O, Henderson M, Gimble JM, Tf, Jg, Jg, Jg, Tf, Kh, Er, Xw, Mh, Om, Jr, Hl, Jr, Hl. Adipose-derived cells: building blocks of three-dimensional microphysiological systems. Biomater Transl 2021;2:301-6. [PMID: 35837416 DOI: 10.12336/biomatertransl.2021.04.005] [Reference Citation Analysis]
7 Knudsen TB, Fitzpatrick SC, De Abrew KN, Birnbaum LS, Chappelle A, Daston GP, Dolinoy DC, Elder A, Euling S, Faustman EM, Fedinick KP, Franzosa JA, Haggard DE, Haws L, Kleinstreuer NC, Buck Louis GM, Mendrick DL, Rudel R, Saili KS, Schug TT, Tanguay RL, Turley AE, Wetmore BA, White KW, Zurlinden TJ. FutureTox IV Workshop Summary: Predictive Toxicology for Healthy Children. Toxicol Sci 2021;180:198-211. [PMID: 33555348 DOI: 10.1093/toxsci/kfab013] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Zhu H, Wang X, Wang X, Pan G, Zhu Y, Feng Y. The toxicity and safety of Chinese medicine from the bench to the bedside. Journal of Herbal Medicine 2021;28:100450. [DOI: 10.1016/j.hermed.2021.100450] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Sharma A, Sances S, Workman MJ, Svendsen CN. Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery. Cell Stem Cell 2020;26:309-29. [PMID: 32142662 DOI: 10.1016/j.stem.2020.02.011] [Cited by in Crossref: 102] [Cited by in F6Publishing: 80] [Article Influence: 102.0] [Reference Citation Analysis]
10 Hargrove-Grimes P, Low LA, Tagle DA. Microphysiological systems: What it takes for community adoption. Exp Biol Med (Maywood) 2021;246:1435-46. [PMID: 33899539 DOI: 10.1177/15353702211008872] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Miller DR, Schaffer DK, Neely MD, McClain ES, Travis AR, Block FE 3rd, Mckenzie J, Werner EM, Armstrong L, Markov DA, Bowman AB, Ess KC, Cliffel DE, Wikswo JP. A bistable, multiport valve enables microformulators creating microclinical analyzers that reveal aberrant glutamate metabolism in astrocytes derived from a tuberous sclerosis patient. Sens Actuators B Chem 2021;341:129972. [PMID: 34092923 DOI: 10.1016/j.snb.2021.129972] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
12 Gracioso Martins AM, Wilkins MD, Ligler FS, Daniele MA, Freytes DO. Microphysiological System for High-Throughput Computer Vision Measurement of Microtissue Contraction. ACS Sens 2021;6:985-94. [PMID: 33656335 DOI: 10.1021/acssensors.0c02172] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Frazier T, Williams C, Henderson M, Duplessis T, Rogers E, Wu X, Hamel K, Martin EC, Mohiuddin O, Shaik S, Devireddy R, Rowan BG, Hayes DJ, Gimble JM. Breast Cancer Reconstruction: Design Criteria for a Humanized Microphysiological System. Tissue Eng Part A 2021;27:479-88. [PMID: 33528293 DOI: 10.1089/ten.TEA.2020.0372] [Reference Citation Analysis]
14 Landi M, Everitt J, Berridge B. Bioethical, Reproducibility, and Translational Challenges of Animal Models. ILAR J 2021:ilaa027. [PMID: 33693624 DOI: 10.1093/ilar/ilaa027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
15 Tambe V, Desai N, Rajpoot K, Tekade RK. “Organ-on-a-chip”-based physiologically relevant pharmacokinetic models. Biopharmaceutics and Pharmacokinetics Considerations 2021. [DOI: 10.1016/b978-0-12-814425-1.00024-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Sun Q, Meng M, Steed JN, Sidow SJ, Bergeron BE, Niu LN, Ma JZ, Tay FR. Manoeuvrability and biocompatibility of endodontic tricalcium silicate-based putties. J Dent 2021;104:103530. [PMID: 33220332 DOI: 10.1016/j.jdent.2020.103530] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
17 Vurat MT, Şeker Ş, Lalegül-ülker Ö, Parmaksiz M, Elçin AE, Elçin YM. Development of a multicellular 3D-bioprinted microtissue model of human periodontal ligament-alveolar bone biointerface: Towards a pre-clinical model of periodontal diseases and personalized periodontal tissue engineering. Genes & Diseases 2020. [DOI: 10.1016/j.gendis.2020.11.011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
18 Corsi F, Carotenuto F, Di Nardo P, Teodori L. Harnessing Inorganic Nanoparticles to Direct Macrophage Polarization for Skeletal Muscle Regeneration. Nanomaterials (Basel) 2020;10:E1963. [PMID: 33023138 DOI: 10.3390/nano10101963] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
19 Caruso G, Musso N, Grasso M, Costantino A, Lazzarino G, Tascedda F, Gulisano M, Lunte SM, Caraci F. Microfluidics as a Novel Tool for Biological and Toxicological Assays in Drug Discovery Processes: Focus on Microchip Electrophoresis. Micromachines (Basel) 2020;11:E593. [PMID: 32549277 DOI: 10.3390/mi11060593] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
20 Hawkins KG, Casolaro C, Brown JA, Edwards DA, Wikswo JP. The Microbiome and the Gut-Liver-Brain Axis for Central Nervous System Clinical Pharmacology: Challenges in Specifying and Integrating In Vitro and In Silico Models. Clin Pharmacol Ther 2020;108:929-48. [PMID: 32347548 DOI: 10.1002/cpt.1870] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
21 Blumenrath SH, Lee BY, Low L, Prithviraj R, Tagle D. Tackling rare diseases: Clinical trials on chips. Exp Biol Med (Maywood) 2020;245:1155-62. [PMID: 32397761 DOI: 10.1177/1535370220924743] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
22 Caballero D, Reis RL, Kundu SC. Engineering Patient-on-a-Chip Models for Personalized Cancer Medicine. Adv Exp Med Biol 2020;1230:43-64. [PMID: 32285364 DOI: 10.1007/978-3-030-36588-2_4] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
23 Guerrero YA, Desai D, Sullivan C, Kindt E, Spilker ME, Maurer TS, Solomon DE, Bartlett DW. A Microfluidic Perfusion Platform for In Vitro Analysis of Drug Pharmacokinetic-Pharmacodynamic (PK-PD) Relationships. AAPS J 2020;22:53. [PMID: 32124093 DOI: 10.1208/s12248-020-0430-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
24 Taylor DL, Gough A, Schurdak ME, Vernetti L, Chennubhotla CS, Lefever D, Pei F, Faeder JR, Lezon TR, Stern AM, Bahar I. Harnessing Human Microphysiology Systems as Key Experimental Models for Quantitative Systems Pharmacology. Handb Exp Pharmacol 2019;260:327-67. [PMID: 31201557 DOI: 10.1007/164_2019_239] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
25 Renggli K, Frey O. Design and engineering of multiorgan systems. Organ-on-a-chip 2020. [DOI: 10.1016/b978-0-12-817202-5.00012-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
26 Caballero D, Luque-gonzález MA, Reis RL, Kundu SC. Microfluidic systems in cancer research. Biomaterials for 3D Tumor Modeling 2020. [DOI: 10.1016/b978-0-12-818128-7.00015-0] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
27 Shen JX, Youhanna S, Zandi Shafagh R, Kele J, Lauschke VM. Organotypic and Microphysiological Models of Liver, Gut, and Kidney for Studies of Drug Metabolism, Pharmacokinetics, and Toxicity. Chem Res Toxicol 2020;33:38-60. [DOI: 10.1021/acs.chemrestox.9b00245] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
28 Ai Y, Zhang F, Wang C, Xie R, Liang Q. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. TrAC Trends in Analytical Chemistry 2019;117:215-30. [DOI: 10.1016/j.trac.2019.06.026] [Cited by in Crossref: 36] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
29 Cavero I, Guillon J, Holzgrefe HH. Human organotypic bioconstructs from organ-on-chip devices for human-predictive biological insights on drug candidates. Expert Opinion on Drug Safety 2019;18:651-77. [DOI: 10.1080/14740338.2019.1634689] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 9.7] [Reference Citation Analysis]
30 Park SE, Georgescu A, Oh JM, Kwon KW, Huh D. Polydopamine-Based Interfacial Engineering of Extracellular Matrix Hydrogels for the Construction and Long-Term Maintenance of Living Three-Dimensional Tissues. ACS Appl Mater Interfaces 2019;11:23919-25. [PMID: 31199616 DOI: 10.1021/acsami.9b07912] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
31 Maass C, Sorensen NB, Himmelfarb J, Kelly EJ, Stokes CL, Cirit M. Translational Assessment of Drug-Induced Proximal Tubule Injury Using a Kidney Microphysiological System. CPT Pharmacometrics Syst Pharmacol 2019;8:316-25. [PMID: 30869201 DOI: 10.1002/psp4.12400] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 10.7] [Reference Citation Analysis]
32 Renggli K, Rousset N, Lohasz C, Nguyen OTP, Hierlemann A. Integrated Microphysiological Systems: Transferable Organ Models and Recirculating Flow. Adv Biosyst 2019;3:e1900018. [PMID: 32627410 DOI: 10.1002/adbi.201900018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
33 Li X, George SM, Vernetti L, Gough AH, Taylor DL. A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip 2018;18:2614-31. [PMID: 30063238 DOI: 10.1039/c8lc00418h] [Cited by in Crossref: 71] [Cited by in F6Publishing: 74] [Article Influence: 17.8] [Reference Citation Analysis]
34 Rudmann DG. The Emergence of Microphysiological Systems (Organs-on-chips) as Paradigm-changing Tools for Toxicologic Pathology. Toxicol Pathol 2019;47:4-10. [PMID: 30407146 DOI: 10.1177/0192623318809065] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
35 Smirnova L, Kleinstreuer N, Corvi R, Levchenko A, Fitzpatrick SC, Hartung T. 3S - Systematic, systemic, and systems biology and toxicology. ALTEX 2018;35:139-62. [PMID: 29677694 DOI: 10.14573/altex.1804051] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 6.8] [Reference Citation Analysis]
36 Polini A, Del Mercato LL, Barra A, Zhang YS, Calabi F, Gigli G. Towards the development of human immune-system-on-a-chip platforms. Drug Discov Today 2019;24:517-25. [PMID: 30312743 DOI: 10.1016/j.drudis.2018.10.003] [Cited by in Crossref: 55] [Cited by in F6Publishing: 57] [Article Influence: 13.8] [Reference Citation Analysis]
37 Caetano-pinto P, Stahl SH. Perspective on the Application of Microphysiological Systems to Drug Transporter Studies. Drug Metab Dispos 2018;46:1647-57. [DOI: 10.1124/dmd.118.082750] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
38 Low LA, Tagle DA. ‘You-on-a-chip’ for precision medicine. Expert Review of Precision Medicine and Drug Development 2018;3:137-46. [DOI: 10.1080/23808993.2018.1456333] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
39 Cyr KJ, Avaldi OM, Wikswo JP. Circadian hormone control in a human-on-a-chip: In vitro biology's ignored component? Exp Biol Med (Maywood) 2017;242:1714-31. [PMID: 29065796 DOI: 10.1177/1535370217732766] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]