BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Postnova S, Voigt K, Braun HA. A mathematical model of homeostatic regulation of sleep-wake cycles by hypocretin/orexin. J Biol Rhythms 2009;24:523-35. [PMID: 19926811 DOI: 10.1177/0748730409346655] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Patriarca M, Hernández-garcía E, Toral R. Constructive effects of diversity in a multi-neuron model of the homeostatic regulation of the sleep–wake cycle. Chaos, Solitons & Fractals 2015;81:567-74. [DOI: 10.1016/j.chaos.2015.09.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
2 Postnova S. Sleep Modelling across Physiological Levels. Clocks Sleep 2019;1:166-84. [PMID: 33089162 DOI: 10.3390/clockssleep1010015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 3.7] [Reference Citation Analysis]
3 Achermann P, Borbély AA. Sleep Homeostasis and Models of Sleep Regulation. Principles and Practice of Sleep Medicine. Elsevier; 2017. pp. 377-387.e6. [DOI: 10.1016/b978-0-323-24288-2.00036-2] [Cited by in Crossref: 31] [Article Influence: 6.2] [Reference Citation Analysis]
4 Abel JH, Lecamwasam K, Hilaire MAS, Klerman EB. Recent advances in modeling sleep: from the clinic to society and disease. Curr Opin Physiol 2020;15:37-46. [PMID: 34485783 DOI: 10.1016/j.cophys.2019.12.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
5 Tchaptchet A, Postnova S, Finke C, Schneider H, Huber MT, Braun HA. Modeling neuronal activity in relation to experimental voltage-/patch-clamp recordings. Brain Res 2013;1536:159-67. [PMID: 23911648 DOI: 10.1016/j.brainres.2013.06.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
6 Komin N, Toral R. Phase transitions induced by microscopic disorder: A study based on the order parameter expansion. Physica D: Nonlinear Phenomena 2010;239:1827-33. [DOI: 10.1016/j.physd.2010.06.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
7 Rodenbeck A. [Biological principles of sleep and wake]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2011;54:1270-5. [PMID: 22116476 DOI: 10.1007/s00103-011-1373-3] [Cited by in Crossref: 2] [Article Influence: 0.2] [Reference Citation Analysis]
8 Pérez T, Mirasso CR, Toral R, Gunton JD. The constructive role of diversity in the global response of coupled neuron systems. Phil Trans R Soc A 2010;368:5619-32. [DOI: 10.1098/rsta.2010.0264] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
9 Braun HA. Stochasticity Versus Determinacy in Neurobiology: From Ion Channels to the Question of the "Free Will". Front Syst Neurosci 2021;15:629436. [PMID: 34122020 DOI: 10.3389/fnsys.2021.629436] [Reference Citation Analysis]
10 Rosa E Jr, Skilling QM, Stein W. Effects of reciprocal inhibitory coupling in model neurons. Biosystems 2015;127:73-83. [PMID: 25448894 DOI: 10.1016/j.biosystems.2014.11.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
11 Olbrich E, Claussen JC, Achermann P. The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain. Phil Trans R Soc A 2011;369:3884-901. [DOI: 10.1098/rsta.2011.0082] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]
12 Fulcher BD, Phillips AJ, Postnova S, Robinson PA. A physiologically based model of orexinergic stabilization of sleep and wake. PLoS One 2014;9:e91982. [PMID: 24651580 DOI: 10.1371/journal.pone.0091982] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 4.1] [Reference Citation Analysis]
13 Jalewa J, Joshi A, McGinnity TM, Prasad G, Wong-Lin K, Hölscher C. Neural circuit interactions between the dorsal raphe nucleus and the lateral hypothalamus: an experimental and computational study. PLoS One 2014;9:e88003. [PMID: 24516577 DOI: 10.1371/journal.pone.0088003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 3.1] [Reference Citation Analysis]
14 Patriarca M, Postnova S, Braun HA, Hernández-García E, Toral R. Diversity and noise effects in a model of homeostatic regulation of the sleep-wake cycle. PLoS Comput Biol 2012;8:e1002650. [PMID: 22927806 DOI: 10.1371/journal.pcbi.1002650] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
15 Postnova S, Robinson PA, Postnov DD. Adaptation to shift work: physiologically based modeling of the effects of lighting and shifts' start time. PLoS One 2013;8:e53379. [PMID: 23308206 DOI: 10.1371/journal.pone.0053379] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]
16 Carter ME, Brill J, Bonnavion P, Huguenard JR, Huerta R, de Lecea L. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A 2012;109:E2635-44. [PMID: 22955882 DOI: 10.1073/pnas.1202526109] [Cited by in Crossref: 151] [Cited by in F6Publishing: 140] [Article Influence: 15.1] [Reference Citation Analysis]
17 Yang DP, McKenzie-Sell L, Karanjai A, Robinson PA. Wake-sleep transition as a noisy bifurcation. Phys Rev E 2016;94:022412. [PMID: 27627340 DOI: 10.1103/PhysRevE.94.022412] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.2] [Reference Citation Analysis]
18 Skeldon AC, Dijk DJ, Derks G. Mathematical models for sleep-wake dynamics: comparison of the two-process model and a mutual inhibition neuronal model. PLoS One 2014;9:e103877. [PMID: 25084361 DOI: 10.1371/journal.pone.0103877] [Cited by in Crossref: 42] [Cited by in F6Publishing: 27] [Article Influence: 5.3] [Reference Citation Analysis]
19 Phillips AJ, Czeisler CA, Klerman EB. Revisiting spontaneous internal desynchrony using a quantitative model of sleep physiology. J Biol Rhythms 2011;26:441-53. [PMID: 21921298 DOI: 10.1177/0748730411414163] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 3.3] [Reference Citation Analysis]
20 Robinson PA, Postnova S, Abeysuriya RG, Kim JW, Roberts JA, Mckenzie-sell L, Karanjai A, Kerr CC, Fung F, Anderson R, Breakspear MJ, Drysdale PM, Fulcher BD, Phillips AJK, Rennie CJ, Yin G. A Multiscale “Working Brain” Model. In: Bhattacharya BS, Chowdhury FN, editors. Validating Neuro-Computational Models of Neurological and Psychiatric Disorders. Cham: Springer International Publishing; 2015. pp. 107-40. [DOI: 10.1007/978-3-319-20037-8_5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 1.1] [Reference Citation Analysis]
21 Tchaptchet A, Jin W, Braun HA. Diversity and Noise in Neurodynamics Across Different Functional Levels. In: Wang R, Pan X, editors. Advances in Cognitive Neurodynamics (V). Singapore: Springer; 2016. pp. 681-7. [DOI: 10.1007/978-981-10-0207-6_91] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Fleshner M, Booth V, Forger DB, Diniz Behn CG. Circadian regulation of sleep-wake behaviour in nocturnal rats requires multiple signals from suprachiasmatic nucleus. Philos Trans A Math Phys Eng Sci 2011;369:3855-83. [PMID: 21893532 DOI: 10.1098/rsta.2011.0085] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 2.3] [Reference Citation Analysis]
23 Bailey MP, Derks G, Skeldon AC. Circle maps with gaps: Understanding the dynamics of the two-process model for sleep–wake regulation. Eur J Appl Math 2018;29:845-68. [DOI: 10.1017/s0956792518000190] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
24 Holmgren Hopkins N, Sanz-Leon P, Roy D, Postnova S. Spiking patterns and synchronization of thalamic neurons along the sleep-wake cycle. Chaos 2018;28:106314. [PMID: 30384650 DOI: 10.1063/1.5039754] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
25 Peralta AF, Toral R. System-size expansion of the moments of a master equation. Chaos 2018;28:106303. [DOI: 10.1063/1.5039817] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
26 Ni LY, Zhu MJ, Song Y, Liu XM, Tang JY. Pentylenetetrazol-induced seizures are exacerbated by sleep deprivation through orexin receptor-mediated hippocampal cell proliferation. Neurol Sci 2014;35:245-52. [DOI: 10.1007/s10072-013-1495-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
27 Sorooshyari S, Huerta R, de Lecea L. A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition. Front Neurol 2015;6:32. [PMID: 25767461 DOI: 10.3389/fneur.2015.00032] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 2.1] [Reference Citation Analysis]
28 Kumar R, Bose A, Mallick BN. A mathematical model towards understanding the mechanism of neuronal regulation of wake-NREMS-REMS states. PLoS One. 2012;7:e42059. [PMID: 22905114 DOI: 10.1371/journal.pone.0042059] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 3.6] [Reference Citation Analysis]
29 Gabalda-Sagarra M, Carey LB, Garcia-Ojalvo J. Recurrence-based information processing in gene regulatory networks. Chaos 2018;28:106313. [PMID: 30384649 DOI: 10.1063/1.5039861] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
30 Komin N, Lacasa L, Toral R. Critical behavior of a Ginzburg–Landau model with additive quenched noise. J Stat Mech 2010;2010:P12008. [DOI: 10.1088/1742-5468/2010/12/p12008] [Cited by in Crossref: 7] [Article Influence: 0.6] [Reference Citation Analysis]
31 Postnova S, Robinson PA. Forced Wakefulness for Entrainment to Permanent Shift Work: A Computational Study. In: Yamaguchi Y, editor. Advances in Cognitive Neurodynamics (III). Dordrecht: Springer Netherlands; 2013. pp. 105-11. [DOI: 10.1007/978-94-007-4792-0_15] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
32 Liljenström H. Modeling effects of neural fluctuations and inter-scale interactions. Chaos 2018;28:106319. [PMID: 30384657 DOI: 10.1063/1.5044510] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
33 Jin W, Wang A, Ma J, Lin Q. Effects of electromagnetic induction and noise on the regulation of sleep wake cycle. Sci China Technol Sci 2019;62:2113-9. [DOI: 10.1007/s11431-018-9423-x] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 6.7] [Reference Citation Analysis]
34 Jin W, Lin Q, Wang A, Wang C. Computer Simulation of Noise Effects of the Neighborhood of Stimulus Threshold for a Mathematical Model of Homeostatic Regulation of Sleep-Wake Cycles. Complexity 2017;2017:1-7. [DOI: 10.1155/2017/4797545] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 2.4] [Reference Citation Analysis]
35 Williams KS, Diniz Behn CG. Dynamic Interactions between Orexin and Dynorphin May Delay Onset of Functional Orexin Effects: A Modeling Study. J Biol Rhythms 2011;26:171-81. [DOI: 10.1177/0748730410395471] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.2] [Reference Citation Analysis]