1 |
Turner OC, Knight B, Zuraw A, Litjens G, Rudmann DG. Mini Review: The Last Mile-Opportunities and Challenges for Machine Learning in Digital Toxicologic Pathology. Toxicol Pathol 2021;49:714-9. [PMID: 33590805 DOI: 10.1177/0192623321990375] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
2 |
Smith GF. Artificial Intelligence in Drug Safety and Metabolism. Methods Mol Biol 2022;2390:483-501. [PMID: 34731484 DOI: 10.1007/978-1-0716-1787-8_22] [Reference Citation Analysis]
|
3 |
Glass C, Lafata KJ, Jeck W, Horstmeyer R, Cooke C, Everitt J, Glass M, Dov D, Seidman MA. The Role of Machine Learning in Cardiovascular Pathology. Can J Cardiol 2021:S0828-282X(21)00867-9. [PMID: 34813876 DOI: 10.1016/j.cjca.2021.11.008] [Reference Citation Analysis]
|
4 |
Mehrvar S, Himmel LE, Babburi P, Goldberg AL, Guffroy M, Janardhan K, Krempley AL, Bawa B. Deep Learning Approaches and Applications in Toxicologic Histopathology: Current Status and Future Perspectives. J Pathol Inform 2021;12:42. [PMID: 34881097 DOI: 10.4103/jpi.jpi_36_21] [Reference Citation Analysis]
|
5 |
Zuraw A, Aeffner F. Whole-slide imaging, tissue image analysis, and artificial intelligence in veterinary pathology: An updated introduction and review. Vet Pathol 2021;:3009858211040484. [PMID: 34521285 DOI: 10.1177/03009858211040484] [Reference Citation Analysis]
|