BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ogawa EN, Ishizaka A, Tasaka S, Koh H, Ueno H, Amaya F, Ebina M, Yamada S, Funakoshi Y, Soejima J. Contribution of high-mobility group box-1 to the development of ventilator-induced lung injury. Am J Respir Crit Care Med. 2006;174:400-407. [PMID: 16728713 DOI: 10.1164/rccm.200605-699oc] [Cited by in Crossref: 102] [Cited by in F6Publishing: 62] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, Horwood N, Nanchahal J. Alarmins: awaiting a clinical response. J Clin Invest. 2012;122:2711-2719. [PMID: 22850880 DOI: 10.1172/jci62423] [Cited by in Crossref: 316] [Cited by in F6Publishing: 169] [Article Influence: 31.6] [Reference Citation Analysis]
2 Kuipers MT, Aslami H, Tuinman PR, Tuip-de Boer AM, Jongsma G, van der Sluijs KF, Choi G, Wolthuis EK, Roelofs JJ, Bresser P, Schultz MJ, van der Poll T, Wieland CW. The receptor for advanced glycation end products in ventilator-induced lung injury. Intensive Care Med Exp 2014;2:22. [PMID: 26215707 DOI: 10.1186/s40635-014-0022-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
3 Tseng CC, Fang WF, Leung SY, Chen HC, Chang YC, Wang CC, Chang HC, Lin MC. Impact of serum biomarkers and clinical factors on intensive care unit mortality and 6-month outcome in relatively healthy patients with severe pneumonia and acute respiratory distress syndrome. Dis Markers 2014;2014:804654. [PMID: 24723739 DOI: 10.1155/2014/804654] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
4 Zhu S, Li W, Ward MF, Sama AE, Wang H. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflamm Allergy Drug Targets 2010;9:60-72. [PMID: 19906009 DOI: 10.2174/187152810791292872] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 3.3] [Reference Citation Analysis]
5 Chiu S, Bharat A. Role of monocytes and macrophages in regulating immune response following lung transplantation. Curr Opin Organ Transplant. 2016;21:239-245. [PMID: 26977996 DOI: 10.1097/mot.0000000000000313] [Cited by in Crossref: 33] [Cited by in F6Publishing: 20] [Article Influence: 6.6] [Reference Citation Analysis]
6 Gaggar A, Rowe SM, Matthew H, Blalock JE. Proline-Glycine-Proline (PGP) and High Mobility Group Box Protein-1 (HMGB1): Potential Mediators of Cystic Fibrosis Airway Inflammation. Open Respir Med J 2010;4:32-8. [PMID: 20448817 DOI: 10.2174/1874306401004020032] [Cited by in Crossref: 4] [Cited by in F6Publishing: 15] [Article Influence: 0.3] [Reference Citation Analysis]
7 Mariappan N, Husain M, Zafar I, Singh V, Smithson KG, Crowe DR, Pittet JF, Ahmad S, Ahmad A. Extracellular nucleic acid scavenging rescues rats from sulfur mustard analog-induced lung injury and mortality. Arch Toxicol 2020;94:1321-34. [PMID: 32157350 DOI: 10.1007/s00204-020-02699-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
8 Koutsogiannaki S, Shimaoka M, Yuki K. The Use of Volatile Anesthetics as Sedatives for Acute Respiratory Distress Syndrome. Transl Perioper Pain Med 2019;6:27-38. [PMID: 30923729 DOI: 10.31480/2330-4871/084] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
9 Hu G, Malik AB, Minshall RD. Toll-like receptor 4 mediates neutrophil sequestration and lung injury induced by endotoxin and hyperinflation. Crit Care Med 2010;38:194-201. [PMID: 19789446 DOI: 10.1097/CCM.0b013e3181bc7c17] [Cited by in Crossref: 49] [Cited by in F6Publishing: 37] [Article Influence: 4.1] [Reference Citation Analysis]
10 Tadie JM, Bae HB, Jiang S, Park DW, Bell CP, Yang H, Pittet JF, Tracey K, Thannickal VJ, Abraham E, Zmijewski JW. HMGB1 promotes neutrophil extracellular trap formation through interactions with Toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol 2013;304:L342-9. [PMID: 23316068 DOI: 10.1152/ajplung.00151.2012] [Cited by in Crossref: 168] [Cited by in F6Publishing: 157] [Article Influence: 18.7] [Reference Citation Analysis]
11 Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139-162. [PMID: 21219181 DOI: 10.1146/annurev-immunol-030409-101323] [Cited by in Crossref: 881] [Cited by in F6Publishing: 852] [Article Influence: 80.1] [Reference Citation Analysis]
12 Sekiya Y, Shimada K, Takahashi H, Kuga C, Komachi S, Miwa K, Kotani T. Evaluation of a simultaneous adsorption device for cytokines and platelet-neutrophil complexes in vitro and in a rabbit acute lung injury model. Intensive Care Med Exp 2021;9:49. [PMID: 34568985 DOI: 10.1186/s40635-021-00414-7] [Reference Citation Analysis]
13 Sitapara RA, Antoine DJ, Sharma L, Patel VS, Ashby CR Jr, Gorasiya S, Yang H, Zur M, Mantell LL. The α7 nicotinic acetylcholine receptor agonist GTS-21 improves bacterial clearance in mice by restoring hyperoxia-compromised macrophage function. Mol Med 2014;20:238-47. [PMID: 24664237 DOI: 10.2119/molmed.2013.00086] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 3.8] [Reference Citation Analysis]
14 Feng Z, Wang JW, Wang Y, Dong WW, Xu ZF. Propofol Protects Lung Endothelial Barrier Function by Suppression of High-Mobility Group Box 1 (HMGB1) Release and Mitochondrial Oxidative Damage Catalyzed by HMGB1. Med Sci Monit 2019;25:3199-211. [PMID: 31040263 DOI: 10.12659/MSM.915417] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
15 Pittet JF, Koh H, Fang X, Iles K, Christiaans S, Anjun N, Wagener BM, Park DW, Zmijewski JW, Matthay MA, Roux J. HMGB1 accelerates alveolar epithelial repair via an IL-1β- and αvβ6 integrin-dependent activation of TGF-β1. PLoS One 2013;8:e63907. [PMID: 23696858 DOI: 10.1371/journal.pone.0063907] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 3.6] [Reference Citation Analysis]
16 Li B, Peng X, Li H, Chen F, Chen Y, Zhang Y, Le K. The performance of the alarmin HMGB1 in pediatric diseases: From lab to clinic. Immun Inflamm Dis 2021;9:8-30. [PMID: 33140586 DOI: 10.1002/iid3.370] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Wu MQ, Li C, Zhang LN, Lin J, He K, Niu YW, Che CY, Jiang N, Jiang JQ, Zhao GQ. High-mobility group box1 as an amplifier of immune response and target for treatment in Aspergillus fumigatus keratitis. Int J Ophthalmol 2020;13:708-17. [PMID: 32420216 DOI: 10.18240/ijo.2020.05.03] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Yamaguchi K, Nakao S, Iwamoto H, Kagimoto A, Handa Y, Sakamoto S, Horimasu Y, Masuda T, Mimae T, Miyamoto S, Nakashima T, Tsutani Y, Fujitaka K, Miyata Y, Hamada H, Okada M, Hattori N. Predictive role of circulatory HMGB1 in postoperative acute exacerbation of interstitial lung disease in lung cancer patients. Sci Rep 2021;11:10105. [PMID: 33980944 DOI: 10.1038/s41598-021-89663-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Schmidt EP, Tuder RM. Role of Apoptosis in Amplifying Inflammatory Responses in Lung Diseases. J Cell Death 2010;2010:41-53. [PMID: 22081757 DOI: 10.4137/JCD.S5375] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 1.5] [Reference Citation Analysis]
20 Sitapara RA, Gauthier AG, Valdés-Ferrer SI, Lin M, Patel V, Wang M, Martino AT, Perron JC, Ashby CR Jr, Tracey KJ, Pavlov VA, Mantell LL. The α7 nicotinic acetylcholine receptor agonist, GTS-21, attenuates hyperoxia-induced acute inflammatory lung injury by alleviating the accumulation of HMGB1 in the airways and the circulation. Mol Med 2020;26:63. [PMID: 32600307 DOI: 10.1186/s10020-020-00177-z] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
21 Blondonnet R, Audard J, Belville C, Clairefond G, Lutz J, Bouvier D, Roszyk L, Gross C, Lavergne M, Fournet M, Blanchon L, Vachias C, Damon-Soubeyrand C, Sapin V, Constantin JM, Jabaudon M. RAGE inhibition reduces acute lung injury in mice. Sci Rep. 2017;7:7208. [PMID: 28775380 DOI: 10.1038/s41598-017-07638-2] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 7.4] [Reference Citation Analysis]
22 Müller MC, Tuinman PR, Vlaar AP, Tuip AM, Maijoor K, Achouiti A, Van t Veer C, Vroom MB, Juffermans NP. Contribution of damage-associated molecular patterns to transfusion-related acute lung injury in cardiac surgery. Blood Transfus 2014;12:368-75. [PMID: 24887223 DOI: 10.2450/2014.0184-13] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
23 Relja B, Mörs K, Marzi I. Danger signals in trauma. Eur J Trauma Emerg Surg 2018;44:301-16. [PMID: 29728738 DOI: 10.1007/s00068-018-0962-3] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
24 Ebina M, Taniguchi H, Miyasho T, Yamada S, Shibata N, Ohta H, Hisata S, Ohkouchi S, Tamada T, Nishimura H, Ishizaka A, Maruyama I, Okada Y, Takashi K, Nukiwa T. Gradual increase of high mobility group protein b1 in the lungs after the onset of acute exacerbation of idiopathic pulmonary fibrosis. Pulm Med 2011;2011:916486. [PMID: 21637372 DOI: 10.1155/2011/916486] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 3.7] [Reference Citation Analysis]
25 Ramani V, Awasthi S. Toll-like receptor 4-interacting SPA4 peptide suppresses the NLRP3 inflammasome in response to LPS and ATP stimuli. J Leukoc Biol 2015;98:1037-48. [PMID: 26254306 DOI: 10.1189/jlb.3A1114-570R] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
26 Wang H, Zhu S, Zhou R, Li W, Sama AE. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev Mol Med 2008;10:e32. [PMID: 18980707 DOI: 10.1017/S1462399408000884] [Cited by in Crossref: 75] [Cited by in F6Publishing: 55] [Article Influence: 5.4] [Reference Citation Analysis]
27 Smit PJ, Guo WA, Davidson BA, Mullan BA, Helinski JD, Knight PR 3rd. Dietary advanced glycation end-products, its pulmonary receptor, and high mobility group box 1 in aspiration lung injury. J Surg Res 2014;191:214-23. [PMID: 24814199 DOI: 10.1016/j.jss.2014.04.001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
28 Entezari M, Javdan M, Antoine DJ, Morrow DM, Sitapara RA, Patel V, Wang M, Sharma L, Gorasiya S, Zur M. Inhibition of extracellular HMGB1 attenuates hyperoxia-induced inflammatory acute lung injury. Redox Biol. 2014;2:314-322. [PMID: 24563849 DOI: 10.1016/j.redox.2014.01.013] [Cited by in Crossref: 63] [Cited by in F6Publishing: 63] [Article Influence: 7.9] [Reference Citation Analysis]
29 Karlsson S, Pettilä V, Tenhunen J, Laru-Sompa R, Hynninen M, Ruokonen E. HMGB1 as a predictor of organ dysfunction and outcome in patients with severe sepsis. Intensive Care Med 2008;34:1046-53. [PMID: 18297269 DOI: 10.1007/s00134-008-1032-9] [Cited by in Crossref: 106] [Cited by in F6Publishing: 105] [Article Influence: 7.6] [Reference Citation Analysis]
30 Manzoor S, Mariappan N, Zafar I, Wei CC, Ahmad A, Surolia R, Foote JB, Agarwal A, Ahmad S, Athar M, Antony VB, Ahmad A. Cutaneous lewisite exposure causes acute lung injury. Ann N Y Acad Sci 2020;1479:210-22. [PMID: 32329907 DOI: 10.1111/nyas.14346] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 David M, Bodenstein M, Markstaller K. [Protective ventilation therapy. Also relevant for the operating room?]. Anaesthesist 2010;59:595-606. [PMID: 20549173 DOI: 10.1007/s00101-010-1743-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
32 Tadié JM, Gacouin A, Le Tulzo Y. [Ventilator-induced immune dysfunction]. Reanimation 2014;23:9-16. [PMID: 32288738 DOI: 10.1007/s13546-014-0846-4] [Reference Citation Analysis]
33 Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta. 2010;1799:149-156. [PMID: 19948257 DOI: 10.1016/j.bbagrm.2009.11.019] [Cited by in Crossref: 224] [Cited by in F6Publishing: 231] [Article Influence: 17.2] [Reference Citation Analysis]
34 Takahashi Y, Matsutani N, Dejima H, Nakayama T, Uehara H, Kawamura M. Nuclear factor-kappa B influences early phase of compensatory lung growth after pneumonectomy in mice. J Biomed Sci 2017;24:41. [PMID: 28679393 DOI: 10.1186/s12929-017-0350-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
35 Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010;2010. [PMID: 20706656 DOI: 10.1155/2010/672395] [Cited by in Crossref: 496] [Cited by in F6Publishing: 515] [Article Influence: 41.3] [Reference Citation Analysis]
36 Ding N, Wang F, Xiao H, Xu L, She S. Mechanical ventilation enhances HMGB1 expression in an LPS-induced lung injury model. PLoS One 2013;8:e74633. [PMID: 24058610 DOI: 10.1371/journal.pone.0074633] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 3.0] [Reference Citation Analysis]
37 Liu YY, Chen NH, Chang CH, Lin SW, Kao KC, Hu HC, Chang GJ, Li LF. Ethyl pyruvate attenuates ventilation-induced diaphragm dysfunction through high-mobility group box-1 in a murine endotoxaemia model. J Cell Mol Med 2019;23:5679-91. [PMID: 31339670 DOI: 10.1111/jcmm.14478] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
38 Ma L, Zeng J, Mo B, Wang C, Huang J, Sun Y, Yu Y, Liu S. High mobility group box 1: a novel mediator of Th2-type response-induced airway inflammation of acute allergic asthma. J Thorac Dis 2015;7:1732-41. [PMID: 26623095 DOI: 10.3978/j.issn.2072-1439.2015.10.18] [Cited by in F6Publishing: 16] [Reference Citation Analysis]
39 Müller-Redetzky HC, Suttorp N, Witzenrath M. Dynamics of pulmonary endothelial barrier function in acute inflammation: mechanisms and therapeutic perspectives. Cell Tissue Res 2014;355:657-73. [PMID: 24599335 DOI: 10.1007/s00441-014-1821-0] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 5.5] [Reference Citation Analysis]
40 Gaggar A, Rowe SM, Matthew H, Blalock JE. Proline-Glycine-Proline (PGP) and High Mobility Group Box Protein-1 (HMGB1): Potential Mediators of Cystic Fibrosis Airway Inflammation. Open Respir Med J 2010;4:32-8. [PMID: 20448817 DOI: 10.2174/1874306401004020032] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
41 Achouiti A, van der Meer AJ, Florquin S, Yang H, Tracey KJ, van 't Veer C, de Vos AF, van der Poll T. High-mobility group box 1 and the receptor for advanced glycation end products contribute to lung injury during Staphylococcus aureus pneumonia. Crit Care 2013;17:R296. [PMID: 24342460 DOI: 10.1186/cc13162] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 3.9] [Reference Citation Analysis]
42 Wang F, Yin J, Ma Y, Jiang H, Li Y. Vitexin alleviates lipopolysaccharide‑induced islet cell injury by inhibiting HMGB1 release. Mol Med Rep 2017;15:1079-86. [PMID: 28098903 DOI: 10.3892/mmr.2017.6114] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
43 Silva E, Arcaroli J, He Q, Svetkauskaite D, Coldren C, Nick JA, Poch K, Park JS, Banerjee A, Abraham E. HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury. Intensive Care Med. 2007;33:1829-1839. [PMID: 17581740 DOI: 10.1007/s00134-] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
44 Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg 2020;46:751-75. [PMID: 31612270 DOI: 10.1007/s00068-019-01235-w] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 12.0] [Reference Citation Analysis]
45 Kuipers MT, van der Poll T, Schultz MJ, Wieland CW. Bench-to-bedside review: Damage-associated molecular patterns in the onset of ventilator-induced lung injury. Crit Care. 2011;15:235. [PMID: 22216838 DOI: 10.1186/cc10437] [Cited by in Crossref: 69] [Cited by in F6Publishing: 68] [Article Influence: 6.3] [Reference Citation Analysis]
46 Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta. 2010;1799:149-156. [PMID: 19948257 DOI: 10.1016/j.bbagrm.2009.11. 019] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
47 Lai Y, Huang Y. Mechanisms of Mechanical Force Induced Pulmonary Vascular Endothelial Hyperpermeability. Front Physiol 2021;12:714064. [PMID: 34671268 DOI: 10.3389/fphys.2021.714064] [Reference Citation Analysis]
48 Sawa H, Ueda T, Takeyama Y, Yasuda T, Shinzeki M, Nakajima T, Kuroda Y. Blockade of high mobility group box-1 protein attenuates experimental severe acute pancreatitis. World J Gastroenterol 2006; 12(47): 7666-7670 [PMID: 17171797 DOI: 10.3748/wjg.v12.i47.7666] [Cited by in CrossRef: 103] [Cited by in F6Publishing: 105] [Article Influence: 6.4] [Reference Citation Analysis]
49 Wolfson RK, Mapes B, Garcia JGN. Excessive mechanical stress increases HMGB1 expression in human lung microvascular endothelial cells via STAT3. Microvasc Res 2014;92:50-5. [PMID: 24370952 DOI: 10.1016/j.mvr.2013.12.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
50 Wang H, Ward MF, Sama AE. Novel HMGB1-inhibiting therapeutic agents for experimental sepsis. Shock. 2009;32:348-357. [PMID: 19333143 DOI: 10.1097/SHK.0b013e3181a551bd] [Cited by in Crossref: 87] [Cited by in F6Publishing: 50] [Article Influence: 7.3] [Reference Citation Analysis]
51 Rowe SM, Jackson PL, Liu G, Hardison M, Livraghi A, Solomon GM, McQuaid DB, Noerager BD, Gaggar A, Clancy JP, O'Neal W, Sorscher EJ, Abraham E, Blalock JE. Potential role of high-mobility group box 1 in cystic fibrosis airway disease. Am J Respir Crit Care Med 2008;178:822-31. [PMID: 18658107 DOI: 10.1164/rccm.200712-1894OC] [Cited by in Crossref: 76] [Cited by in F6Publishing: 48] [Article Influence: 5.4] [Reference Citation Analysis]
52 Bauer EM, Shapiro R, Billiar TR, Bauer PM. High mobility group Box 1 inhibits human pulmonary artery endothelial cell migration via a Toll-like receptor 4- and interferon response factor 3-dependent mechanism(s). J Biol Chem 2013;288:1365-73. [PMID: 23148224 DOI: 10.1074/jbc.M112.434142] [Cited by in Crossref: 37] [Cited by in F6Publishing: 18] [Article Influence: 3.7] [Reference Citation Analysis]
53 Wu CY, Lu YF, Wang ML, Chen JS, Hsu YC, Yang FS, Cheng YJ. Effects of Dexmedetomidine Infusion on Inflammatory Responses and Injury of Lung Tidal Volume Changes during One-Lung Ventilation in Thoracoscopic Surgery: A Randomized Controlled Trial. Mediators Inflamm 2018;2018:2575910. [PMID: 29853785 DOI: 10.1155/2018/2575910] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
54 Zhu CJ, Yang WG, Li DJ, Song YD, Chen SY, Wang QF, Liu YN, Zhang Y, Cheng B, Wu ZW, Cui ZC. Calycosin attenuates severe acute pancreatitis-associated acute lung injury by curtailing high mobility group box 1 - induced inflammation. World J Gastroenterol 2021; 27(44): 7669-7686 [PMID: 34908806 DOI: 10.3748/wjg.v27.i44.7669] [Reference Citation Analysis]
55 Li LF, Yang CT, Huang CC, Liu YY, Kao KC, Lin HC. Low-molecular-weight heparin reduces hyperoxia-augmented ventilator-induced lung injury via serine/threonine kinase-protein kinase B. Respir Res 2011;12:90. [PMID: 21726460 DOI: 10.1186/1465-9921-12-90] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 2.2] [Reference Citation Analysis]
56 Liu G, Wang J, Park YJ, Tsuruta Y, Lorne EF, Zhao X, Abraham E. High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J Immunol 2008;181:4240-6. [PMID: 18768881 DOI: 10.4049/jimmunol.181.6.4240] [Cited by in Crossref: 117] [Cited by in F6Publishing: 122] [Article Influence: 8.4] [Reference Citation Analysis]
57 Andersson U, Ottestad W, Tracey KJ. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19? Mol Med. 2020;26:42. [PMID: 32380958 DOI: 10.1186/s10020-020-00172-4] [Cited by in Crossref: 84] [Cited by in F6Publishing: 87] [Article Influence: 42.0] [Reference Citation Analysis]
58 Akinosoglou K, Gogos C. Immune-modulating therapy in acute pancreatitis: Fact or fiction. World J Gastroenterol 2014; 20(41): 15200-15215 [PMID: 25386069 DOI: 10.3748/wjg.v20.i41.15200] [Cited by in CrossRef: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
59 Silva E, Arcaroli J, He Q, Svetkauskaite D, Coldren C, Nick JA, Poch K, Park JS, Banerjee A, Abraham E. HMGB1 and LPS induce distinct patterns of gene expression and activation in neutrophils from patients with sepsis-induced acute lung injury. Intensive Care Med 2007;33:1829-39. [PMID: 17581740 DOI: 10.1007/s00134-007-0748-2] [Cited by in Crossref: 60] [Cited by in F6Publishing: 61] [Article Influence: 4.0] [Reference Citation Analysis]
60 Isshiki T, Sakamoto S, Homma S. Therapeutic Role of Recombinant Human Soluble Thrombomodulin for Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Medicina (Kaunas) 2019;55:E172. [PMID: 31137593 DOI: 10.3390/medicina55050172] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
61 Pribis JP, Al-Abed Y, Yang H, Gero D, Xu H, Montenegro MF, Bauer EM, Kim S, Chavan SS, Cai C, Li T, Szoleczky P, Szabo C, Tracey KJ, Billiar TR. The HIV Protease Inhibitor Saquinavir Inhibits HMGB1-Driven Inflammation by Targeting the Interaction of Cathepsin V with TLR4/MyD88. Mol Med 2015;21:749-57. [PMID: 26349060 DOI: 10.2119/molmed.2015.00197] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
62 Yang Z, Deng Y, Su D, Tian J, Gao Y, He Z, Wang X. TLR4 as receptor for HMGB1-mediated acute lung injury after liver ischemia/reperfusion injury. Lab Invest. 2013;93:792-800. [PMID: 23628899 DOI: 10.1038/labinvest.2013.66] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 5.7] [Reference Citation Analysis]
63 Zhu XD, Lei XP, Dong WB. Resveratrol as a potential therapeutic drug for respiratory system diseases. Drug Des Devel Ther 2017;11:3591-8. [PMID: 29290681 DOI: 10.2147/DDDT.S148868] [Cited by in Crossref: 18] [Cited by in F6Publishing: 5] [Article Influence: 3.6] [Reference Citation Analysis]
64 Creagh-Brown BC, Quinlan GJ, Evans TW, Burke-Gaffney A. The RAGE axis in systemic inflammation, acute lung injury and myocardial dysfunction: an important therapeutic target? Intensive Care Med 2010;36:1644-56. [PMID: 20631986 DOI: 10.1007/s00134-010-1952-z] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 4.3] [Reference Citation Analysis]