BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stavrinos EL, Coxon JP. High-intensity Interval Exercise Promotes Motor Cortex Disinhibition and Early Motor Skill Consolidation. Journal of Cognitive Neuroscience 2017;29:593-604. [DOI: 10.1162/jocn_a_01078] [Cited by in Crossref: 68] [Cited by in F6Publishing: 73] [Article Influence: 13.6] [Reference Citation Analysis]
Number Citing Articles
1 Keye SA, Kim J, Cannavale CN, Walk AM, Burd NA, Pindus D, Khan NA. Neuroelectric indices of motor response preparation are selectively associated with physical activity among adults with obesity. International Journal of Psychophysiology 2022;182:200-210. [DOI: 10.1016/j.ijpsycho.2022.10.013] [Reference Citation Analysis]
2 Netz Y, Herschkovitz SF, Levin O, Ziv G. The effect of acute exercise on cognitive and motor inhibition – Does fitness moderate this effect? Psychology of Sport and Exercise 2022. [DOI: 10.1016/j.psychsport.2022.102344] [Reference Citation Analysis]
3 Ho K, Cirillo J, Ren A, Byblow WD. Intracortical facilitation and inhibition in human primary motor cortex during motor skill acquisition. Exp Brain Res 2022. [DOI: 10.1007/s00221-022-06496-3] [Reference Citation Analysis]
4 Sivaramakrishnan A, Zuhl M, Mang CS. Editorial: Exercise priming: The use of physical exercise to support motor and cognitive function. Front Psychol 2022;13:1043611. [DOI: 10.3389/fpsyg.2022.1043611] [Reference Citation Analysis]
5 Wang F, Jiang Y, Hou L. Effects of different exercise intensities on motor skill learning capability and process. Science & Sports 2022. [DOI: 10.1016/j.scispo.2021.09.006] [Reference Citation Analysis]
6 Pickersgill JW, Turco CV, Ramdeo K, Rehsi RS, Foglia SD, Nelson AJ. The Combined Influences of Exercise, Diet and Sleep on Neuroplasticity. Front Psychol 2022;13:831819. [PMID: 35558719 DOI: 10.3389/fpsyg.2022.831819] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Sarı ID, Lunghi C. Motor and Visual Plasticity interact in Adult Humans.. [DOI: 10.1101/2022.05.03.490377] [Reference Citation Analysis]
8 Robertson EM. Memory leaks: information shared across memory systems. Trends in Cognitive Sciences 2022. [DOI: 10.1016/j.tics.2022.03.010] [Reference Citation Analysis]
9 Moriarty T, Johnson A, Thomas M, Evers C, Auten A, Cavey K, Dorman K, Bourbeau K. Acute Aerobic Exercise-Induced Motor Priming Improves Piano Performance and Alters Motor Cortex Activation. Front Psychol 2022;13:825322. [DOI: 10.3389/fpsyg.2022.825322] [Reference Citation Analysis]
10 Hendy AM, Andrushko JW, Della Gatta PA, Teo W. Acute Effects of High-Intensity Aerobic Exercise on Motor Cortical Excitability and Inhibition in Sedentary Adults. Front Psychol 2022;13:814633. [DOI: 10.3389/fpsyg.2022.814633] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Vints WA, Levin O, Fujiyama H, Verbunt J, Masiulis N. Exerkines and long-term synaptic potentiation: mechanisms of exercise-induced neuroplasticity. Frontiers in Neuroendocrinology 2022. [DOI: 10.1016/j.yfrne.2022.100993] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Bao S, Wang J, Wright DL, Buchanan JJ, Lei Y. The decay and consolidation of effector-independent motor memories. Sci Rep 2022;12:3131. [PMID: 35210478 DOI: 10.1038/s41598-022-07032-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Lehmann N, Villringer A, Taubert M. Priming cardiovascular exercise improves complex motor skill learning by affecting the trajectory of learning-related brain plasticity. Sci Rep 2022;12:1107. [PMID: 35064175 DOI: 10.1038/s41598-022-05145-7] [Reference Citation Analysis]
14 Andrews SC, Curtin D, Coxon JP, Stout JC. Motor cortex plasticity response to acute cardiorespiratory exercise and intermittent theta-burst stimulation is attenuated in premanifest and early Huntington’s disease. Sci Rep 2022;12. [DOI: 10.1038/s41598-021-04378-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Bonuzzi GMG, Torriani-pasin C. Cardiovascular exercise and motor learning in non-disabled individuals: A systematic review with a behavioral emphasis. Motriz: rev educ fis 2022;28:e1022005221. [DOI: 10.1590/s1980-65742022005221] [Reference Citation Analysis]
16 Cadwallader CJ, Taylor EM, Chong TT, Curtin D, Hendrikse JJ, Stout JC, Coxon JP. Exercise and cognition in aging. Exercise to Prevent and Manage Chronic Disease Across the Lifespan 2022. [DOI: 10.1016/b978-0-323-89843-0.00010-6] [Reference Citation Analysis]
17 Pixa NH, Hübner L, Kutz DF, Voelcker-Rehage C. A Single Bout of High-Intensity Cardiovascular Exercise Does Not Enhance Motor Performance and Learning of a Visuomotor Force Modulation Task, but Triggers Ipsilateral Task-Related EEG Activity. Int J Environ Res Public Health 2021;18:12512. [PMID: 34886237 DOI: 10.3390/ijerph182312512] [Reference Citation Analysis]
18 Neva JL, Brown KE, Peters S, Feldman SJ, Mahendran N, Boisgontier MP, Boyd LA. Acute Exercise Modulates the Excitability of Specific Interneurons in Human Motor Cortex. Neuroscience 2021;475:103-16. [PMID: 34487820 DOI: 10.1016/j.neuroscience.2021.08.032] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Hand BJ, Opie GM, Sidhu SK, Semmler JG. Motor cortex plasticity and visuomotor skill learning in upper and lower limbs of endurance-trained cyclists. Eur J Appl Physiol. [DOI: 10.1007/s00421-021-04825-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Mackay CP, Brauer SG, Kuys SS, Schaumberg MA, Leow LA. The acute effects of aerobic exercise on sensorimotor adaptation in chronic stroke. Restor Neurol Neurosci 2021;39:367-77. [PMID: 34569981 DOI: 10.3233/RNN-211175] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Tian S, Mou H, Fang Q, Zhang X, Meng F, Qiu F. Comparison of the Sustainability Effects of High-Intensity Interval Exercise and Moderate-Intensity Continuous Exercise on Cognitive Flexibility. Int J Environ Res Public Health 2021;18:9631. [PMID: 34574554 DOI: 10.3390/ijerph18189631] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Cirillo J. Physical activity, motor performance and skill learning: a focus on primary motor cortex in healthy aging. Exp Brain Res 2021. [PMID: 34499187 DOI: 10.1007/s00221-021-06218-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Sampaio ASB, Real CC, Gutierrez RMS, Singulani MP, Alouche SR, Britto LR, Pires RS. Neuroplasticity induced by the retention period of a complex motor skill learning in rats. Behav Brain Res 2021;414:113480. [PMID: 34302881 DOI: 10.1016/j.bbr.2021.113480] [Reference Citation Analysis]
24 Dhir S, Teo WP, Chamberlain SR, Tyler K, Yücel M, Segrave RA. The Effects of Combined Physical and Cognitive Training on Inhibitory Control: A Systematic Review and Meta-Analysis. Neurosci Biobehav Rev 2021;128:735-48. [PMID: 34256070 DOI: 10.1016/j.neubiorev.2021.07.008] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
25 Quinlan C, Rattray B, Pryor D, Northey JM, Coxon J, Cherbuin N, Andrews SC. A Short-Term Intervention of High-Intensity Exercise and Anodal-tDCS on Motor Learning in Middle-Aged Adults: An RCT. Front Hum Neurosci 2021;15:661079. [PMID: 34220470 DOI: 10.3389/fnhum.2021.661079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Turco CV, Nelson AJ. Transcranial Magnetic Stimulation to Assess Exercise-Induced Neuroplasticity. Front Neuroergonomics 2021;2:679033. [DOI: 10.3389/fnrgo.2021.679033] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
27 Nicolini C, Nelson AJ. Current Methodological Pitfalls and Caveats in the Assessment of Exercise-Induced Changes in Peripheral Brain-Derived Neurotrophic Factor: How Result Reproducibility Can Be Improved. Front Neuroergonomics 2021;2. [DOI: 10.3389/fnrgo.2021.678541] [Reference Citation Analysis]
28 Nicolini C, Michalski B, Toepp SL, Turco CV, D'Hoine T, Harasym D, Gibala MJ, Fahnestock M, Nelson AJ. A Single Bout of High-intensity Interval Exercise Increases Corticospinal Excitability, Brain-derived Neurotrophic Factor, and Uncarboxylated Osteolcalcin in Sedentary, Healthy Males. Neuroscience 2020;437:242-55. [PMID: 32482330 DOI: 10.1016/j.neuroscience.2020.03.042] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 21.0] [Reference Citation Analysis]
29 Hu M, Zeng N, Gu Z, Zheng Y, Xu K, Xue L, Leng L, Lu X, Shen Y, Huang J. Short-Term High-Intensity Interval Exercise Promotes Motor Cortex Plasticity and Executive Function in Sedentary Females. Front Hum Neurosci 2021;15:620958. [PMID: 33967719 DOI: 10.3389/fnhum.2021.620958] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
30 Andrews SC, Curtin D, Hawi Z, Wongtrakun J, Stout JC, Coxon JP. Intensity Matters: High-intensity Interval Exercise Enhances Motor Cortex Plasticity More Than Moderate Exercise. Cereb Cortex 2020;30:101-12. [PMID: 31041988 DOI: 10.1093/cercor/bhz075] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 36.0] [Reference Citation Analysis]
31 Hugues N, Pellegrino C, Rivera C, Berton E, Pin-Barre C, Laurin J. Is High-Intensity Interval Training Suitable to Promote Neuroplasticity and Cognitive Functions after Stroke? Int J Mol Sci 2021;22:3003. [PMID: 33809413 DOI: 10.3390/ijms22063003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
32 Hung A, Roig M, Gillen JB, Sabiston CM, Swardfager W, Chen JL. Aerobic exercise and aerobic fitness level do not modify motor learning. Sci Rep 2021;11:5366. [PMID: 33686100 DOI: 10.1038/s41598-021-84764-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Alibazi RJ, Pearce AJ, Rostami M, Frazer AK, Brownstein C, Kidgell DJ. Determining the Intracortical Responses After a Single Session of Aerobic Exercise in Young Healthy Individuals: A Systematic Review and Best Evidence Synthesis. J Strength Cond Res 2021;35:562-75. [PMID: 33201155 DOI: 10.1519/JSC.0000000000003884] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
34 Levin O, Netz Y, Ziv G. Behavioral and Neurophysiological Aspects of Inhibition-The Effects of Acute Cardiovascular Exercise. J Clin Med 2021;10:E282. [PMID: 33466667 DOI: 10.3390/jcm10020282] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
35 Nicolini C, Fahnestock M, Gibala MJ, Nelson AJ. Understanding the Neurophysiological and Molecular Mechanisms of Exercise-Induced Neuroplasticity in Cortical and Descending Motor Pathways: Where Do We Stand? Neuroscience 2021;457:259-82. [PMID: 33359477 DOI: 10.1016/j.neuroscience.2020.12.013] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
36 Wanner P, Winterholler M, Gaßner H, Winkler J, Klucken J, Pfeifer K, Steib S. Acute exercise following skill practice promotes motor memory consolidation in Parkinson's disease. Neurobiol Learn Mem 2021;178:107366. [PMID: 33358765 DOI: 10.1016/j.nlm.2020.107366] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
37 Mackay CP, Brauer SG, Kuys SS, Schaumberg MA, Leow L. The acute effects of aerobic exercise on sensorimotor adaptation in chronic stroke.. [DOI: 10.1101/2020.12.10.20231043] [Reference Citation Analysis]
38 Swarbrick D, Kiss A, Trehub S, Tremblay L, Alter D, Chen JL. HIIT the Road Jack: An Exploratory Study on the Effects of an Acute Bout of Cardiovascular High-Intensity Interval Training on Piano Learning. Front Psychol 2020;11:2154. [PMID: 33013550 DOI: 10.3389/fpsyg.2020.02154] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Brown KE, Neva JL, Mang CS, Chau B, Chiu LK, Francisco BA, Staines WR, Boyd LA. The influence of an acute bout of moderate-intensity cycling exercise on sensorimotor integration. Eur J Neurosci 2020;52:4779-90. [PMID: 32692429 DOI: 10.1111/ejn.14909] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
40 Chen J, Roig M, Wright DL. Exercise Reduces Competition between Procedural and Declarative Memory Systems. eNeuro 2020;7:ENEURO. [PMID: 32616624 DOI: 10.1523/ENEURO.0070-20.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
41 Izquierdo-Alventosa R, Inglés M, Cortés-Amador S, Gimeno-Mallench L, Sempere-Rubio N, Chirivella J, Serra-Añó P. Comparative study of the effectiveness of a low-pressure hyperbaric oxygen treatment and physical exercise in women with fibromyalgia: randomized clinical trial. Ther Adv Musculoskelet Dis 2020;12:1759720X20930493. [PMID: 32636943 DOI: 10.1177/1759720X20930493] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
42 Wanner P, Cheng FH, Steib S. Effects of acute cardiovascular exercise on motor memory encoding and consolidation: A systematic review with meta-analysis. Neurosci Biobehav Rev 2020;116:365-81. [PMID: 32565171 DOI: 10.1016/j.neubiorev.2020.06.018] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
43 Wanner P, Winterholler M, Gaßner H, Winkler J, Klucken J, Pfeifer K, Steib S. Acute Exercise Following Skill Practice Promotes Motor Memory Consolidation in Parkinson’s Disease.. [DOI: 10.1101/2020.05.15.097394] [Reference Citation Analysis]
44 Cirillo J, Semmler JG, Mooney RA, Byblow WD. Primary motor cortex function and motor skill acquisition: insights from threshold-hunting TMS. Exp Brain Res 2020;238:1745-57. [DOI: 10.1007/s00221-020-05791-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
45 Hehl M, Swinnen SP, Cuypers K. Alterations of hand sensorimotor function and cortical motor representations over the adult lifespan. Aging (Albany NY) 2020;12:4617-40. [PMID: 32160591 DOI: 10.18632/aging.102925] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
46 Raffin E, Siebner HR. Use-Dependent Plasticity in Human Primary Motor Hand Area: Synergistic Interplay Between Training and Immobilization. Cereb Cortex 2019;29:356-71. [PMID: 30364930 DOI: 10.1093/cercor/bhy226] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
47 Stevenson ME, Kay JJM, Atry F, Wickstrom AT, Krueger JR, Pashaie RE, Swain RA. Wheel running for 26 weeks is associated with sustained vascular plasticity in the rat motor cortex. Behav Brain Res 2020;380:112447. [PMID: 31870777 DOI: 10.1016/j.bbr.2019.112447] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
48 Wanner P, Müller T, Cristini J, Pfeifer K, Steib S. Exercise Intensity Does not Modulate the Effect of Acute Exercise on Learning a Complex Whole-Body Task. Neuroscience 2020;426:115-28. [DOI: 10.1016/j.neuroscience.2019.11.027] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
49 Lorås H, Haga M, Sigmundsson H. Effect of a Single Bout of Acute Aerobic Exercise at Moderate-to-Vigorous Intensities on Motor Learning, Retention and Transfer. Sports (Basel) 2020;8:E15. [PMID: 32013119 DOI: 10.3390/sports8020015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
50 El-Sayes J, Turco CV, Skelly LE, Locke MB, Gibala MJ, Nelson AJ. Acute high-intensity and moderate-intensity interval exercise do not change corticospinal excitability in low fit, young adults. PLoS One 2020;15:e0227581. [PMID: 31978065 DOI: 10.1371/journal.pone.0227581] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
51 Bonuzzi GMG, Alves ÉJM, Perotti Junior A. Effects of the aerobic exercise on the learning of a sports motor skill. Motriz: rev educ fis 2020;26:e10201420. [DOI: 10.1590/s1980-6574202000011420] [Reference Citation Analysis]
52 Moriarty TA, Mermier C, Kravitz L, Gibson A, Beltz N, Zuhl M. Acute Aerobic Exercise Based Cognitive and Motor Priming: Practical Applications and Mechanisms. Front Psychol 2019;10:2790. [PMID: 31920835 DOI: 10.3389/fpsyg.2019.02790] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
53 Yamazaki Y, Sato D, Yamashiro K, Nakano S, Onishi H, Maruyama A. Acute Low-Intensity Aerobic Exercise Modulates Intracortical Inhibitory and Excitatory Circuits in an Exercised and a Non-exercised Muscle in the Primary Motor Cortex. Front Physiol 2019;10:1361. [PMID: 31787901 DOI: 10.3389/fphys.2019.01361] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
54 Yamazaki Y, Yamashiro K, Onishi H, Otsuru N, Kojima S, Saito K, Sato D. Modulation of inhibitory function in the primary somatosensory cortex and temporal discrimination threshold induced by acute aerobic exercise. Behav Brain Res 2020;377:112253. [PMID: 31550485 DOI: 10.1016/j.bbr.2019.112253] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
55 Angulo-Barroso R, Ferrer-Uris B, Busquets A. Enhancing Children's Motor Memory Retention Through Acute Intense Exercise: Effects of Different Exercise Durations. Front Psychol 2019;10:2000. [PMID: 31555181 DOI: 10.3389/fpsyg.2019.02000] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
56 Charalambous CC, French MA, Morton SM, Reisman DS. A single high-intensity exercise bout during early consolidation does not influence retention or relearning of sensorimotor locomotor long-term memories. Exp Brain Res 2019;237:2799-810. [PMID: 31444538 DOI: 10.1007/s00221-019-05635-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
57 Opie GM, Semmler JG. Acute Exercise at Different Intensities Influences Corticomotor Excitability and Performance of a Ballistic Thumb Training Task. Neuroscience 2019;412:29-39. [DOI: 10.1016/j.neuroscience.2019.05.049] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
58 El-sayes J, Turco CV, Skelly LE, Nicolini C, Fahnestock M, Gibala MJ, Nelson AJ. The Effects of Biological Sex and Ovarian Hormones on Exercise-Induced Neuroplasticity. Neuroscience 2019;410:29-40. [DOI: 10.1016/j.neuroscience.2019.04.054] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
59 Opie GM, Hand BJ, Coxon JP, Ridding MC, Ziemann U, Semmler JG. Visuomotor task acquisition is reduced by priming paired associative stimulation in older adults. Neurobiol Aging 2019;81:67-76. [PMID: 31247460 DOI: 10.1016/j.neurobiolaging.2019.05.017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
60 Neva JL, Ma JA, Orsholits D, Boisgontier MP, Boyd LA. The effects of acute exercise on visuomotor adaptation, learning, and inter-limb transfer. Exp Brain Res 2019;237:1109-27. [DOI: 10.1007/s00221-019-05491-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
61 Devanne H, Allart E. Boosting brain motor plasticity with physical exercise. Neurophysiol Clin 2019;49:91-3. [PMID: 30686672 DOI: 10.1016/j.neucli.2019.01.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
62 Boyne P, Meyrose C, Westover J, Whitesel D, Hatter K, Reisman DS, Cunningham D, Carl D, Jansen C, Khoury JC, Gerson M, Kissela B, Dunning K. Exercise intensity affects acute neurotrophic and neurophysiological responses poststroke. J Appl Physiol (1985) 2019;126:431-43. [PMID: 30571289 DOI: 10.1152/japplphysiol.00594.2018] [Cited by in Crossref: 37] [Cited by in F6Publishing: 38] [Article Influence: 9.3] [Reference Citation Analysis]
63 Steib S, Wanner P, Adler W, Winkler J, Klucken J, Pfeifer K. A Single Bout of Aerobic Exercise Improves Motor Skill Consolidation in Parkinson's Disease. Front Aging Neurosci 2018;10:328. [PMID: 30405397 DOI: 10.3389/fnagi.2018.00328] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 5.8] [Reference Citation Analysis]
64 El-Sayes J, Harasym D, Turco CV, Locke MB, Nelson AJ. Exercise-Induced Neuroplasticity: A Mechanistic Model and Prospects for Promoting Plasticity. Neuroscientist 2019;25:65-85. [PMID: 29683026 DOI: 10.1177/1073858418771538] [Cited by in Crossref: 90] [Cited by in F6Publishing: 95] [Article Influence: 22.5] [Reference Citation Analysis]
65 Jo JS, Chen J, Riechman S, Roig M, Wright DL. The protective effects of acute cardiovascular exercise on the interference of procedural memory. Psychol Res 2019;83:1543-55. [PMID: 29637259 DOI: 10.1007/s00426-018-1005-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
66 Smith AE, Hendy AM, Tempest GD. The importance of understanding the underlying physiology of exercise when designing exercise interventions for brain health. J Physiol 2018;596:1131-2. [PMID: 29425407 DOI: 10.1113/JP275756] [Reference Citation Analysis]
67 Coxon JP, Cash RFH, Hendrikse JJ, Rogasch NC, Stavrinos E, Suo C, Yücel M. GABA concentration in sensorimotor cortex following high-intensity exercise and relationship to lactate levels. J Physiol 2018;596:691-702. [PMID: 29159914 DOI: 10.1113/JP274660] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 6.2] [Reference Citation Analysis]
68 Luz-Santos C, Ribeiro Camatti J, Barbosa Paixão A, Nunes Sá K, Montoya P, Lee M, Fontes Baptista A. Additive effect of tDCS combined with Peripheral Electrical Stimulation to an exercise program in pain control in knee osteoarthritis: study protocol for a randomized controlled trial. Trials 2017;18:609. [PMID: 29268764 DOI: 10.1186/s13063-017-2332-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
69 Raffin E, Siebner HR. Use-dependent plasticity in human primary motor hand area: Synergistic interplay between training and immobilisation.. [DOI: 10.1101/217661] [Reference Citation Analysis]
70 Mang CS, McEwen LM, MacIsaac JL, Snow NJ, Campbell KL, Kobor MS, Ross CJD, Boyd LA. Exploring genetic influences underlying acute aerobic exercise effects on motor learning. Sci Rep 2017;7:12123. [PMID: 28935933 DOI: 10.1038/s41598-017-12422-3] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.6] [Reference Citation Analysis]
71 Nepveu JF, Thiel A, Tang A, Fung J, Lundbye-Jensen J, Boyd LA, Roig M. A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke. Neurorehabil Neural Repair 2017;31:726-35. [PMID: 28691645 DOI: 10.1177/1545968317718269] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 11.8] [Reference Citation Analysis]
72 Robertson EM, Takacs A. Exercising Control Over Memory Consolidation. Trends in Cognitive Sciences 2017;21:310-2. [DOI: 10.1016/j.tics.2017.03.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]