BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lu H, Du W, Ren L, Hamblin MH, Becker RC, Chen YE, Fan Y. Vascular Smooth Muscle Cells in Aortic Aneurysm: From Genetics to Mechanisms. J Am Heart Assoc 2021;:e023601. [PMID: 34796717 DOI: 10.1161/JAHA.121.023601] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Xun M, Zhang J, Wu M, Chen Y. Long non-coding RNAs: The growth controller of vascular smooth muscle cells in cardiovascular diseases. Int J Biochem Cell Biol 2023;157:106392. [PMID: 36828237 DOI: 10.1016/j.biocel.2023.106392] [Reference Citation Analysis]
2 Bastola S, Kothapalli C, Ramamurthi A. Sodium Nitroprusside Stimulation of Elastic Matrix Regeneration by Aneurysmal Smooth Muscle Cells. Tissue Eng Part A 2023. [PMID: 36597287 DOI: 10.1089/ten.TEA.2022.0169] [Reference Citation Analysis]
3 Huang Y, Li C, Shi D, Wang H, Shang X, Wang W, Zhang X, Zhang X, Hu Y, Tang S, Liu S, Luo S, Zhao K, Mordi IR, Doney ASF, Yang X, Yu H, Li X, He M. Integrating oculomics with genomics reveals imaging biomarkers for preventive and personalized prediction of arterial aneurysms. EPMA J 2023;14:73-86. [PMID: 36866161 DOI: 10.1007/s13167-023-00315-7] [Reference Citation Analysis]
4 Balint B, Bernstorff IGL, Schwab T, Schäfers H. Aortic regurgitation provokes phenotypic modulation of smooth muscle cells in the normal ascending aorta.. [DOI: 10.1101/2023.02.08.527682] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Zhang Z, Zhuang J, Sun D, Ding Q, Zheng H, Li H, Zhang X, Du Y, Ma T, Meng Q. Netrin-1 Monoclonal Antibody-Functionalized Nanoparticle Loaded with Metformin Prevents the Progression of Abdominal Aortic Aneurysms. Int J Nanomedicine 2023;18:627-39. [PMID: 36777816 DOI: 10.2147/IJN.S400993] [Reference Citation Analysis]
6 Dong CX, Malecki C, Robertson E, Hambly B, Jeremy R. Molecular Mechanisms in Genetic Aortopathy-Signaling Pathways and Potential Interventions. Int J Mol Sci 2023;24. [PMID: 36675309 DOI: 10.3390/ijms24021795] [Reference Citation Analysis]
7 Wang Y, Liu X, Xu Q, Xu W, Zhou X, Lin Z. CCN2 deficiency in smooth muscle cells triggers cell reprogramming and aggravates aneurysm development. JCI Insight 2023;8. [PMID: 36625347 DOI: 10.1172/jci.insight.162987] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Wu S, Liu S, Wang B, Li M, Cheng C, Zhang H, Chen N, Guo X. Single-cell transcriptome in silico analysis reveals conserved regulatory programs in macrophages/monocytes of abdominal aortic aneurysm from multiple mouse models and human. Front Cardiovasc Med 2022;9:1062106. [PMID: 36698942 DOI: 10.3389/fcvm.2022.1062106] [Reference Citation Analysis]
9 Balint B, Bernstorff IGL, Schwab T, Schäfers HJ. Age-dependent phenotypic modulation of smooth muscle cells in the normal ascending aorta. Front Cardiovasc Med 2023;10:1114355. [PMID: 36895832 DOI: 10.3389/fcvm.2023.1114355] [Reference Citation Analysis]
10 Vantler M, Schorscher M, Berghausen EM, Moore JB, Wong D, Zhaolong L, Wißmüller M, Gnatzy-feik L, Zierden M, Mehrkens D, Adam M, Zhao X, Odenthal M, Sengle G, Boor P, Maegdefessel L, Baldus S, Rosenkranz S. PI 3-kinase isoform p110α controls smooth muscle cell functionality and protects against aortic aneurysm formation.. [DOI: 10.1101/2022.12.01.518561] [Reference Citation Analysis]
11 Wang K, Kan Q, Ye Y, Qiu J, Huang L, Wu R, Yao C. Novel insight of N6-methyladenosine modified subtypes in abdominal aortic aneurysm. Front Genet 2022;13. [DOI: 10.3389/fgene.2022.1055396] [Reference Citation Analysis]
12 Sanhueza-Olivares F, Troncoso MF, Pino-de la Fuente F, Martinez-Bilbao J, Riquelme JA, Norambuena-Soto I, Villa M, Lavandero S, Castro PF, Chiong M. A potential role of autophagy-mediated vascular senescence in the pathophysiology of HFpEF. Front Endocrinol (Lausanne) 2022;13:1057349. [PMID: 36465616 DOI: 10.3389/fendo.2022.1057349] [Reference Citation Analysis]
13 Han Y, Yan L, Xia L, Li S, Zhang Q, jin C. Global trends and Frontier topics about vascular smooth muscle cells phenotype switch: A bibliometric analysis from 1999 to 2021. Front Pharmacol 2022;13. [DOI: 10.3389/fphar.2022.1004525] [Reference Citation Analysis]
14 Wei W, Yang J, Zhang Z, Dai Y, Li W, Wu X, Dai H. Biocompatible Magnetic Poly(carbonate urethane) Microspheres for Potential Applications in Aneurysm Embolization. ACS Appl Polym Mater 2022. [DOI: 10.1021/acsapm.2c01275] [Reference Citation Analysis]
15 Xie X, Shen X, Wang Z, Wu Q, Shi F, Chen Y, Zhong X, Yuan S. Dysregulated autophagy-related genes in abdominal aortic aneurysm: Comprehensive bioinformatics analysis and experimental validation.. [DOI: 10.21203/rs.3.rs-2184838/v1] [Reference Citation Analysis]
16 Zhao G, Zhao Y, Lu H, Chang Z, Liu H, Wang H, Liang W, Liu Y, Zhu T, Rom O, Guo Y, Chang L, Yang B, Garcia-Barrio MT, Lin JD, Chen YE, Zhang J. BAF60c prevents abdominal aortic aneurysm formation through epigenetic control of vascular smooth muscle cell homeostasis. J Clin Invest 2022;132. [PMID: 36066968 DOI: 10.1172/JCI158309] [Reference Citation Analysis]
17 Molla MR, Shimizu A, Komeno M, Rahman NIA, Soh JEC, Nguyen LKC, Khan MR, Tesega WW, Chen S, Pang X, Tanaka-Okamoto M, Takashima N, Sato A, Suzuki T, Ogita H. Vascular smooth muscle RhoA counteracts abdominal aortic aneurysm formation by modulating MAP4K4 activity. Commun Biol 2022;5:1071. [PMID: 36207400 DOI: 10.1038/s42003-022-04042-z] [Reference Citation Analysis]
18 You L, Zheng Y, Yang J, Hou Q, Wang L, Zhang Y, Zhao C, Xie R, Aminuddin A. LncRNA MDRL Mitigates Atherosclerosis through miR-361/SQSTM1/NLRP3 Signaling. Mediators of Inflammation 2022;2022:1-13. [DOI: 10.1155/2022/5463505] [Reference Citation Analysis]
19 Busscher D, Boon RA, Juni RP. The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin Sci (Lond) 2022;136:1157-78. [PMID: 35946958 DOI: 10.1042/CS20210994] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kallenbach K, Remes A, Müller OJ, Arif R, Zaradzki M, Wagner AH. Translational Medicine: Towards Gene Therapy of Marfan Syndrome. JCM 2022;11:3934. [DOI: 10.3390/jcm11143934] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022;:1-26. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Jauhiainen S, Kiema M, Hedman M, Laakkonen JP. Large Vessel Cell Heterogeneity and Plasticity: Focus in Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2022;42:811-8. [PMID: 35587695 DOI: 10.1161/ATVBAHA.121.316237] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Weaver LM, Loftin CD, Zhan CG. Development of pharmacotherapies for abdominal aortic aneurysms. Biomed Pharmacother 2022;153:113340. [PMID: 35780618 DOI: 10.1016/j.biopha.2022.113340] [Reference Citation Analysis]
24 Neave L, Tahir M, Nightingale M, Jadli AS, Patel VB, Barker AJ, Malaisrie SC, Mccarthy PM, Markl M, Fedak PWM, Di Martino ES. Medial Collagen Type and Quantity Influence Mechanical Properties of Aneurysm Wall in Bicuspid Aortic Valve Patients. Front Mech Eng 2022;8. [DOI: 10.3389/fmech.2022.874243] [Reference Citation Analysis]
25 S S, Dahal S, Bastola S, Dayal S, Yau J, Ramamurthi A. Stem Cell Based Approaches to Modulate the Matrix Milieu in Vascular Disorders. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.879977] [Reference Citation Analysis]
26 Li KX, Wang ZC, Machuki JO, Li MZ, Wu YJ, Niu MK, Yu KY, Lu QB, Sun HJ. Benefits of Curcumin in the Vasculature: A Therapeutic Candidate for Vascular Remodeling in Arterial Hypertension and Pulmonary Arterial Hypertension? Front Physiol 2022;13:848867. [PMID: 35530510 DOI: 10.3389/fphys.2022.848867] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Chen CH, Ho HH, Jiang WC, Ao-Ieong WS, Wang J, Orekhov AN, Sobenin IA, Layne MD, Yet SF. Cysteine-rich protein 2 deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation in mice. J Biomed Sci 2022;29:25. [PMID: 35414069 DOI: 10.1186/s12929-022-00808-z] [Reference Citation Analysis]
28 Xiao L, Wang N. PPAR-δ: A key nuclear receptor in vascular function and remodeling. Journal of Molecular and Cellular Cardiology 2022. [DOI: 10.1016/j.yjmcc.2022.04.019] [Reference Citation Analysis]
29 Clark ER, Helliwell RJ, Bailey MA, Hemmings KE, Bridge KI, Griffin KJ, Scott DJA, Jennings LM, Riches-suman K, Porter KE. Preservation of Smooth Muscle Cell Integrity and Function: A Target for Limiting Abdominal Aortic Aneurysm Expansion? Cells 2022;11:1043. [DOI: 10.3390/cells11061043] [Reference Citation Analysis]
30 Hsu CY, Thuy Tien Vo T, Lee CW, Chen YL, Lin WN, Cheng HC, Canh Vo Q, Lee IT. Carbon monoxide releasing molecule-2 attenuates angiotensin II-induced IL-6/Jak2/Stat3-associated inflammation by inhibiting NADPH oxidase- and mitochondria-derived ROS in human aortic smooth muscle cells. Biochem Pharmacol 2022;:114978. [PMID: 35218740 DOI: 10.1016/j.bcp.2022.114978] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]