BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res 2020;127:427-47. [PMID: 32673537 DOI: 10.1161/CIRCRESAHA.120.316958] [Cited by in Crossref: 12] [Cited by in F6Publishing: 55] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Wu J, Li J, Feng B, Bi Z, Zhu G, Zhang Y, Li X. Activation of AMPK-PGC-1α pathway ameliorates peritoneal dialysis related peritoneal fibrosis in mice by enhancing mitochondrial biogenesis. Ren Fail 2022;44:1545-57. [PMID: 36148521 DOI: 10.1080/0886022X.2022.2126789] [Reference Citation Analysis]
2 Liu J, He X, Zheng S, Zhu A, Wang J, Ding Y. The Mitochondrial Unfolded Protein Response: A Novel Protective Pathway Targeting Cardiomyocytes. Oxidative Medicine and Cellular Longevity 2022;2022:1-19. [DOI: 10.1155/2022/6430342] [Reference Citation Analysis]
3 Wang Y, Wei J, Zhang P, Zhang X, Wang Y, Chen W, Zhao Y, Cui X. Neuregulin-1, a potential therapeutic target for cardiac repair. Front Pharmacol 2022;13:945206. [DOI: 10.3389/fphar.2022.945206] [Reference Citation Analysis]
4 Byrne SE, Vishwakarma N, Sriramula S, Katwa LC. Dopamine receptor 3: A mystery at the heart of cardiac fibrosis. Life Sci 2022;308:120918. [PMID: 36041503 DOI: 10.1016/j.lfs.2022.120918] [Reference Citation Analysis]
5 Gibb AA, Huynh AT, Gaspar RB, Ploesch TL, Lombardi AA, Lorkiewicz PK, Lazaropoulos MP, Bedi K, Arany Z, Margulies KB, Hill BG, Elrod JW. Glutamine uptake and catabolism is required for myofibroblast formation and persistence. J Mol Cell Cardiol 2022;172:78-89. [PMID: 35988357 DOI: 10.1016/j.yjmcc.2022.08.002] [Reference Citation Analysis]
6 Ragazzini S, Scocozza F, Bernava G, Auricchio F, Colombo GI, Barbuto M, Conti M, Pesce M, Garoffolo G. Mechanosensor YAP cooperates with TGF-β1 signaling to promote myofibroblast activation and matrix stiffening in a 3D model of human cardiac fibrosis. Acta Biomaterialia 2022. [DOI: 10.1016/j.actbio.2022.08.063] [Reference Citation Analysis]
7 Braidotti N, Chen SN, Long CS, Cojoc D, Sbaizero O. Piezo1 Channel as a Potential Target for Hindering Cardiac Fibrotic Remodeling. IJMS 2022;23:8065. [DOI: 10.3390/ijms23158065] [Reference Citation Analysis]
8 Lausecker F, Lennon R, Randles MJ. The kidney matrisome in health, aging and disease. Kidney Int 2022:S0085-2538(22)00544-0. [PMID: 35870643 DOI: 10.1016/j.kint.2022.06.029] [Reference Citation Analysis]
9 Guo AH, Baliira R, Skinner ME, Kumar S, Andren A, Zhang L, Goldsmith RS, Michan S, Davis NJ, Maccani MW, Day SM, Sinclair DA, Brody MJ, Lyssiotis CA, Stein AB, Lombard DB. Sirtuin 5 levels are limiting in preserving cardiac function and suppressing fibrosis in response to pressure overload. Sci Rep 2022;12:12258. [PMID: 35851833 DOI: 10.1038/s41598-022-16506-7] [Reference Citation Analysis]
10 Li G, Qin Y, Cheng Z, Cheng X, Wang R, Luo X, Zhao Y, Zhang D, Li G, Li T. Gpx3 and Egr1 Are Involved in Regulating the Differentiation Fate of Cardiac Fibroblasts under Pressure Overload. Oxidative Medicine and Cellular Longevity 2022;2022:1-21. [DOI: 10.1155/2022/3235250] [Reference Citation Analysis]
11 Bugger H, Byrne NJ, Abel ED. Animal Models of Dysregulated Cardiac Metabolism. Circ Res 2022;130:1965-93. [PMID: 35679363 DOI: 10.1161/CIRCRESAHA.122.320334] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Garvin AM, Hale TM. State of Change: Epigenetic and Mitochondrial Regulation of Cardiac Fibroblast Activation. Current Opinion in Physiology 2022. [DOI: 10.1016/j.cophys.2022.100557] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Coeyman SJ, Richardson WJ, Bradshaw AD. Mechanics & Matrix: Positive Feedback Loops between Fibroblasts and ECM Drive Interstitial Cardiac Fibrosis. Current Opinion in Physiology 2022. [DOI: 10.1016/j.cophys.2022.100560] [Reference Citation Analysis]
14 Effendi WI, Nagano T. Connective Tissue Growth Factor in Idiopathic Pulmonary Fibrosis: Breaking the Bridge. IJMS 2022;23:6064. [DOI: 10.3390/ijms23116064] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Gibb AA, Murray EK, Huynh AT, Gaspar RB, Ploesch TL, Bedi K, Lombardi AA, Lorkiewicz PK, Roy R, Arany Z, Kelly DP, Margulies KB, Hill BG, Elrod JW. Glutaminolysis is Essential for Myofibroblast Persistence and In Vivo Targeting Reverses Fibrosis and Cardiac Dysfunction in Heart Failure. Circulation 2022;145:1625-8. [PMID: 35605036 DOI: 10.1161/CIRCULATIONAHA.121.057879] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Zhang H, Wang X, Shi Y, Liu M, Xia Q, Jiang W, Zhang Y. Danggui Buxue Decoction Ameliorates Idiopathic Pulmonary Fibrosis through MicroRNA and Messenger RNA Regulatory Network. Evid Based Complement Alternat Med 2022;2022:3439656. [PMID: 35518349 DOI: 10.1155/2022/3439656] [Reference Citation Analysis]
17 Jiang X, Tian W, Kim D, McQuiston AS, Vinh R, Rockson SG, Semenza GL, Nicolls MR. Hypoxia and Hypoxia-Inducible Factors in Lymphedema. Front Pharmacol 2022;13:851057. [PMID: 35450048 DOI: 10.3389/fphar.2022.851057] [Reference Citation Analysis]
18 Yang T, Hu Y, Chen S, Li L, Cao X, Yuan J, Shu F, Jiang Z, Qian S, Zhu X, Wei C, Wei R, Yan M, Li C, Yin X, Lu Q. YY1 inactivated transcription co-regulator PGC-1α to promote mitochondrial dysfunction of early diabetic nephropathy-associated tubulointerstitial fibrosis. Cell Biol Toxicol 2022. [PMID: 35445903 DOI: 10.1007/s10565-022-09711-7] [Reference Citation Analysis]
19 Venugopal H, Hanna A, Humeres C, Frangogiannis NG. Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells 2022;11:1386. [DOI: 10.3390/cells11091386] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
20 Methatham T, Nagai R, Aizawa K. A New Hypothetical Concept in Metabolic Understanding of Cardiac Fibrosis: Glycolysis Combined with TGF-β and KLF5 Signaling. Int J Mol Sci 2022;23:4302. [PMID: 35457114 DOI: 10.3390/ijms23084302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Marzano F, Liccardo D, Elia A, Mucio I, de Lucia C, Lucchese AM, Gao E, Ferrara N, Rapacciuolo A, Paolocci N, Rengo G, Koch WJ, Cannavo A. Genetic Catalytic Inactivation of GRK5 Impairs Cardiac Function in Mice Via Dysregulated P53 Levels. JACC Basic Transl Sci 2022;7:366-80. [PMID: 35540100 DOI: 10.1016/j.jacbts.2022.01.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Jeon KI, Kumar A, Wozniak KT, Nehrke K, Huxlin KR. Defining the Role of Mitochondrial Fission in Corneal Myofibroblast Differentiation. Invest Ophthalmol Vis Sci 2022;63:2. [PMID: 35377925 DOI: 10.1167/iovs.63.4.2] [Reference Citation Analysis]
23 Mackay CDA, Jadli AS, Fedak PWM, Patel VB. Adventitial Fibroblasts in Aortic Aneurysm: Unraveling Pathogenic Contributions to Vascular Disease. Diagnostics 2022;12:871. [DOI: 10.3390/diagnostics12040871] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Luu VT, Phan S, Jin ZQ. Dedifferentiation of Human Cardiac Myofibroblasts Is Independent of Activation of COX-2/PGE2 Pathway. Int J Mol Sci 2022;23:3023. [PMID: 35328443 DOI: 10.3390/ijms23063023] [Reference Citation Analysis]
25 Neupane R, Youker K, Yalamanchili HK, Cieslik KA, Karmouty-quintana H, Guha A, Thandavarayan RA. Cleavage stimulating factor 64 depletion mitigates cardiac fibrosis through alternative polyadenylation. Biochemical and Biophysical Research Communications 2022;597:109-14. [DOI: 10.1016/j.bbrc.2022.01.093] [Reference Citation Analysis]
26 Chen YY, Chen XG, Zhang S. Druggability of lipid metabolism modulation against renal fibrosis. Acta Pharmacol Sin 2022;43:505-19. [PMID: 33990764 DOI: 10.1038/s41401-021-00660-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
27 Travers JG, Tharp CA, Rubino M, McKinsey TA. Therapeutic targets for cardiac fibrosis: from old school to next-gen. J Clin Invest 2022;132:e148554. [PMID: 35229727 DOI: 10.1172/JCI148554] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
28 Huang S, Shao T, Liu H, Li T, Gui X, Zhao Q. Resident Fibroblast MKL1 Is Sufficient to Drive Pro-fibrogenic Response in Mice. Front Cell Dev Biol 2021;9:812748. [PMID: 35178401 DOI: 10.3389/fcell.2021.812748] [Reference Citation Analysis]
29 Zha Y, Li Y, Ge Z, Wang J, Jiao Y, Zhang J, Zhang S. ADAMTS8 Promotes Cardiac Fibrosis Partly Through Activating EGFR Dependent Pathway. Front Cardiovasc Med 2022;9:797137. [DOI: 10.3389/fcvm.2022.797137] [Reference Citation Analysis]
30 Yu Y, Sun Q, Li T, Ren X, Lin L, Sun M, Duan J, Sun Z. Adverse outcome pathway of fine particulate matter leading to increased cardiovascular morbidity and mortality: An integrated perspective from toxicology and epidemiology. J Hazard Mater 2022;430:128368. [PMID: 35149491 DOI: 10.1016/j.jhazmat.2022.128368] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
31 Farrell E, Aliabouzar M, Quesada C, Baker BM, Franceschi RT, Putnam AJ, Fabiilli ML. Spatiotemporal control of myofibroblast activation in acoustically-responsive scaffolds via ultrasound-induced matrix stiffening. Acta Biomater 2022;138:133-43. [PMID: 34808418 DOI: 10.1016/j.actbio.2021.11.020] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Dabravolski SA, Sukhorukov VN, Kalmykov VA, Orekhov NA, Grechko AV, Orekhov AN. Heat Shock Protein 90 as Therapeutic Target for CVDs and Heart Ageing. Int J Mol Sci 2022;23:649. [PMID: 35054835 DOI: 10.3390/ijms23020649] [Reference Citation Analysis]
33 Sagris M, Vardas EP, Theofilis P, Antonopoulos AS, Oikonomou E, Tousoulis D. Atrial Fibrillation: Pathogenesis, Predisposing Factors, and Genetics. Int J Mol Sci 2021;23:6. [PMID: 35008432 DOI: 10.3390/ijms23010006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
34 Wu KK. Control of Tissue Fibrosis by 5-Methoxytryptophan, an Innate Anti-Inflammatory Metabolite. Front Pharmacol 2021;12:759199. [PMID: 34858185 DOI: 10.3389/fphar.2021.759199] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
35 Shi Y, Zhao L, Zhang Y, Qin Q, Cong H, Guo Z. Homocysteine promotes cardiac fibrosis by regulating the Akt/FoxO3 pathway. Ann Transl Med 2021;9:1732. [PMID: 35071426 DOI: 10.21037/atm-21-5602] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Trotsyuk AA, Chen K, Hyung S, Ma KC, Henn D, Mermin-Bunnell AM, Mittal S, Padmanabhan J, Larson MR, Steele SR, Sivaraj D, Bonham CA, Noishiki C, Rodrigues M, Jiang Y, Jing S, Niu S, Chattopadhyay A, Perrault DP, Leeolou MC, Fischer KS, Gurusankar G, Kussie HC, Wan DC, Januszyk M, Longaker MT, Gurtner GC. Inhibiting Fibroblast Mechanotransduction Modulates Severity of Idiopathic Pulmonary Fibrosis. Adv Wound Care (New Rochelle) 2021. [PMID: 34544267 DOI: 10.1089/wound.2021.0077] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
37 Torimoto K, Okuno K, Kuroda R, Shanas N, Cicalese SM, Eguchi K, Elliott KJ, Kawai T, Corbett CB, Peluzzo AM, St Paul AK, Autieri MV, Scalia R, Rizzo V, Hashimoto T, Eguchi S. Glucose consumption of vascular cell types in culture; toward optimization of experimental conditions. Am J Physiol Cell Physiol 2021. [PMID: 34817269 DOI: 10.1152/ajpcell.00257.2021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Yang R, Tan C, Najafi M. Cardiac inflammation and fibrosis following chemo/radiation therapy: mechanisms and therapeutic agents. Inflammopharmacology 2021. [PMID: 34813027 DOI: 10.1007/s10787-021-00894-9] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
39 Hwang S, Chung KW. Targeting fatty acid metabolism for fibrotic disorders. Arch Pharm Res 2021;44:839-56. [PMID: 34664210 DOI: 10.1007/s12272-021-01352-4] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
40 Oh A, Jeon S, Jeong MG, Kim HK, Kang J, Lee YS, Hwang ES. HSPB1 inhibitor J2 attenuates lung inflammation through direct modulation of Ym1 production and paracrine signaling. Biomed Pharmacother 2021;143:112225. [PMID: 34649353 DOI: 10.1016/j.biopha.2021.112225] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Shao S, Zhang Y, Gong M, Yang Q, Yuan M, Yuan M, Suo Y, Wang X, Li Y, Bao Q, Li G. Ivabradine Ameliorates Cardiac Function in Heart Failure with Preserved and Reduced Ejection Fraction via Upregulation of miR-133a. Oxid Med Cell Longev 2021;2021:1257283. [PMID: 34630844 DOI: 10.1155/2021/1257283] [Reference Citation Analysis]
42 Chang X, Zhang T, Wang J, Liu Y, Yan P, Meng Q, Yin Y, Wang S. SIRT5-Related Desuccinylation Modification Contributes to Quercetin-Induced Protection against Heart Failure and High-Glucose-Prompted Cardiomyocytes Injured through Regulation of Mitochondrial Quality Surveillance. Oxid Med Cell Longev 2021;2021:5876841. [PMID: 34603599 DOI: 10.1155/2021/5876841] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
43 Działo E, Czepiel M, Tkacz K, Siedlar M, Kania G, Błyszczuk P. WNT/β-Catenin Signaling Promotes TGF-β-Mediated Activation of Human Cardiac Fibroblasts by Enhancing IL-11 Production. Int J Mol Sci 2021;22:10072. [PMID: 34576234 DOI: 10.3390/ijms221810072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
44 Ock S, Ham W, Kang CW, Kang H, Lee WS, Kim J. IGF-1 protects against angiotensin II-induced cardiac fibrosis by targeting αSMA. Cell Death Dis 2021;12:688. [PMID: 34244467 DOI: 10.1038/s41419-021-03965-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
45 Khan AW, Paneni F, Jandeleit-Dahm KAM. Cell-specific epigenetic changes in atherosclerosis. Clin Sci (Lond) 2021;135:1165-87. [PMID: 33988232 DOI: 10.1042/CS20201066] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
46 Guan C, Zhang HF, Wang YJ, Chen ZT, Deng BQ, Qiu Q, Chen SX, Wu MX, Chen YX, Wang JF. The Downregulation of ADAM17 Exerts Protective Effects against Cardiac Fibrosis by Regulating Endoplasmic Reticulum Stress and Mitophagy. Oxid Med Cell Longev 2021;2021:5572088. [PMID: 34035876 DOI: 10.1155/2021/5572088] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
47 Gao S, Li G, Shao Y, Wei Z, Huang S, Qi F, Jiao Y, Li Y, Zhang C, Du J. FABP5 Deficiency Impairs Mitochondrial Function and Aggravates Pathological Cardiac Remodeling and Dysfunction. Cardiovasc Toxicol 2021;21:619-29. [PMID: 33929718 DOI: 10.1007/s12012-021-09653-2] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
48 López B, Ravassa S, Moreno MU, José GS, Beaumont J, González A, Díez J. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol 2021;18:479-98. [PMID: 33568808 DOI: 10.1038/s41569-020-00504-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 31] [Article Influence: 4.0] [Reference Citation Analysis]