BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Borck PC, Guo LW, Plutzky J. BET Epigenetic Reader Proteins in Cardiovascular Transcriptional Programs. Circ Res 2020;126:1190-208. [PMID: 32324495 DOI: 10.1161/CIRCRESAHA.120.315929] [Cited by in Crossref: 47] [Cited by in F6Publishing: 49] [Article Influence: 23.5] [Reference Citation Analysis]
Number Citing Articles
1 Ma L, Wang J, Zhang Y, Fang F, Ling J, Chu X, Zhang Z, Tao Y, Li X, Tian Y, Li Z, Sang X, Zhang K, Lu L, Wan X, Chen Y, Yu J, Zhuo R, Wu S, Lu J, Pan J, Hu S. BRD4 PROTAC degrader MZ1 exerts anticancer effects in acute myeloid leukemia by targeting c-Myc and ANP32B genes. Cancer Biol Ther 2022;23:1-15. [PMID: 36170346 DOI: 10.1080/15384047.2022.2125748] [Reference Citation Analysis]
2 He Y, Zan X, Miao J, Wang B, Wu Y, Shen Y, Chen X, Gou H, Zheng S, Huang N, Cheng Y, Ju Y, Fu X, Qian Z, Zhou P, Liu J, Gao X. Enhanced anti-glioma efficacy of doxorubicin with BRD4 PROTAC degrader using targeted nanoparticles. Mater Today Bio 2022;16:100423. [PMID: 36157053 DOI: 10.1016/j.mtbio.2022.100423] [Reference Citation Analysis]
3 Lizcano F, Bustamante L. Molecular perspectives in hypertrophic heart disease: An epigenetic approach from chromatin modification. Front Cell Dev Biol 2022;10. [DOI: 10.3389/fcell.2022.1070338] [Reference Citation Analysis]
4 Wang H, Liu Z, Wang J, Hu F, Zhou Q, Wei L, Bao Q, Wang J, Liang J, Liu Z, Zhang W. Superenhancers activate the autophagy-related genes Beclin1 and LC3B to drive metastasis and drug resistance in osteosarcoma. Front Med 2022. [DOI: 10.1007/s11684-022-0919-0] [Reference Citation Analysis]
5 Buckler AJ, Marlevi D, Skenteris NT, Lengquist M, Kronqvist M, Matic L, Hedin U. In silico model of atherosclerosis with individual patient calibration to enable precision medicine for cardiovascular disease. Computers in Biology and Medicine 2022. [DOI: 10.1016/j.compbiomed.2022.106364] [Reference Citation Analysis]
6 Wasiak S, Tsujikawa LM, Daze E, Gilham D, Stotz SC, Rakai BD, Sarsons CD, Fu L, Azhar S, Jahagirdar R, Sweeney M, Johansson JO, Wong NC, Kulikowski E. Epigenetic BET reader inhibitor apabetalone (RVX-208) counters proinflammatory aortic gene expression in a diet induced obesity mouse model and in human endothelial cells. Atherosclerosis 2022. [DOI: 10.1016/j.atherosclerosis.2022.11.015] [Reference Citation Analysis]
7 Jarausch J, Neuenroth L, Andag R, Leha A, Fischer A, Asif AR, Lenz C, Eidizadeh A. Influence of Shear Stress, Inflammation and BRD4 Inhibition on Human Endothelial Cells: A Holistic Proteomic Approach. Cells 2022;11:3086. [PMID: 36231049 DOI: 10.3390/cells11193086] [Reference Citation Analysis]
8 Toth PP, Schwartz GG, Nicholls SJ, Khan A, Szarek M, Ginsberg HN, Johansson JO, Kalantar-zadeh K, Kulikowski E, Lebioda K, Wong NC, Sweeney M, Ray KK. Reduction in the risk of major adverse cardiovascular events with the BET protein inhibitor apabetalone in patients with recent acute coronary syndrome, type 2 diabetes, and moderate to high likelihood of non-alcoholic fatty liver disease. American Journal of Preventive Cardiology 2022;11:100372. [DOI: 10.1016/j.ajpc.2022.100372] [Reference Citation Analysis]
9 Zhao K, Mao Y, Li Y, Yang C, Wang K, Zhang J. The roles and mechanisms of epigenetic regulation in pathological myocardial remodeling. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.952949] [Reference Citation Analysis]
10 Wu D, Duan Q. Roles of Bromodomain Extra Terminal Proteins in Metabolic Signaling and Diseases. Pharmaceuticals (Basel) 2022;15:1032. [PMID: 36015180 DOI: 10.3390/ph15081032] [Reference Citation Analysis]
11 Gorica E, Mohammed SA, Ambrosini S, Calderone V, Costantino S, Paneni F. Epi-Drugs in Heart Failure. Front Cardiovasc Med 2022;9:923014. [PMID: 35911511 DOI: 10.3389/fcvm.2022.923014] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Cui Q, Li W, Wang Z, Xu K, Wang S, Shi J, Zhang L, Chen S. Design, synthesis and biological evaluation of coumarin derivatives as potential BRD4 inhibitors. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2022.106117] [Reference Citation Analysis]
13 Han Y, Nie J, Wang DW, Ni L. Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.931475] [Reference Citation Analysis]
14 Fu L, Wasiak S, Tsujikawa LM, Rakai BD, Stotz SC, Wong NCW, Johansson JO, Sweeney M, Mohan CM, Khan A, Kulikowski E. Inhibition of epigenetic reader proteins by apabetalone counters inflammation in activated innate immune cells from Fabry disease patients receiving enzyme replacement therapy. Pharmacol Res Perspect 2022;10:e00949. [PMID: 35417091 DOI: 10.1002/prp2.949] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Li J, Shen H, Owens GK, Guo L. SREBP1 regulates Lgals3 activation in response to cholesterol loading. Molecular Therapy - Nucleic Acids 2022;28:892-909. [DOI: 10.1016/j.omtn.2022.05.028] [Reference Citation Analysis]
16 Lin Z, Li Z, Guo Z, Cao Y, Li J, Liu P, Li Z. Epigenetic Reader Bromodomain Containing Protein 2 Facilitates Pathological Cardiac Hypertrophy via Regulating the Expression of Citrate Cycle Genes. Front Pharmacol 2022;13:887991. [DOI: 10.3389/fphar.2022.887991] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Fu R, Zu S, Liu Y, Li J, Dang W, Liao L, Liu L, Chen P, Huang H, Wu K, Zhou B, Pan Q, Luo C, Zhang Y, Li G. Selective bromodomain and extra-terminal bromodomain inhibitor inactivates macrophages and hepatic stellate cells to inhibit liver inflammation and fibrosis. Bioengineered 2022;13:10914-30. [DOI: 10.1080/21655979.2022.2066756] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Zhang M, Urabe G, Ozer HG, Xie X, Webb A, Shirasu T, Li J, Han R, Kent KC, Wang B, Guo LW. Angioplasty induces epigenomic remodeling in injured arteries. Life Sci Alliance 2022;5:e202101114. [PMID: 35169042 DOI: 10.26508/lsa.202101114] [Reference Citation Analysis]
19 Zhou N, Zhang Y, Lei G, Chen Y, Lin T, Liu Q, Zhao Y, Mao J, Jiang Y, Mao R. Inhibition of BETs prevents heat shock-induced cell death via upregulating HSPs in SV40 large T antigen transfected cells. Genes Genomics 2022. [PMID: 35175516 DOI: 10.1007/s13258-022-01228-x] [Reference Citation Analysis]
20 Gupta RM, Plutzky J. The Aging Aorta: Are We Only as Old as Our Endothelium? Arterioscler Thromb Vasc Biol 2022;42:172-4. [PMID: 35080899 DOI: 10.1161/ATVBAHA.121.317275] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Chen J, Liu Z, Ma L, Gao S, Fu H, Wang C, Lu A, Wang B, Gu X. Targeting Epigenetics and Non-coding RNAs in Myocardial Infarction: From Mechanisms to Therapeutics. Front Genet 2021;12:780649. [PMID: 34987550 DOI: 10.3389/fgene.2021.780649] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Mohammed SA, Albiero M, Ambrosini S, Gorica E, Karsai G, Caravaggi CM, Masi S, Camici GG, Wenzl F, Calderone V, Madeddu P, Sciarretta S, Matter CM, Spinetti G, Luscher TF, Ruschitzka F, Costantino S, Fadini GP, Paneni F. The BET Protein Inhibitor Apabetalone Rescues Diabetes-induced Impairment of Angiogenic Response by Epigenetic Regulation of Thrombospondin-1. Antioxid Redox Signal 2021. [PMID: 34913726 DOI: 10.1089/ars.2021.0127] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Schreiber J, Liaukouskaya N, Fuhrmann L, Hauser AT, Jung M, Huber TB, Wanner N. BET Proteins Regulate Expression of Osr1 in Early Kidney Development. Biomedicines 2021;9:1878. [PMID: 34944697 DOI: 10.3390/biomedicines9121878] [Reference Citation Analysis]
24 Branigan GL, Olsen KS, Burda I, Haemmerle MW, Ho J, Venuto A, D'Antonio ND, Briggs IE, DiBenedetto AJ. Zebrafish Paralogs brd2a and brd2b Are Needed for Proper Circulatory, Excretory and Central Nervous System Formation and Act as Genetic Antagonists during Development. J Dev Biol 2021;9:46. [PMID: 34842711 DOI: 10.3390/jdb9040046] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Chakraborty R, Chatterjee P, Dave JM, Ostriker AC, Greif DM, Rzucidlo EM, Martin KA. Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vasc Sci 2021;2:79-94. [PMID: 34617061 DOI: 10.1016/j.jvssci.2021.04.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 12] [Article Influence: 20.0] [Reference Citation Analysis]
26 Peng Z, Zhang Y, Ma X, Zhou M, Wu S, Song Z, Yuan Y, Chen Y, Li Y, Wang G, Huang F, Qiao Y, Xia B, Liu W, Liu J, Zhang X, He X, Pan T, Xu H, Zhang H. Brd4 Regulates the Homeostasis of CD8+ T-Lymphocytes and Their Proliferation in Response to Antigen Stimulation. Front Immunol 2021;12:728082. [PMID: 34512660 DOI: 10.3389/fimmu.2021.728082] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Zolty R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J Exp Pharmacol 2021;13:817-57. [PMID: 34429666 DOI: 10.2147/JEP.S236743] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
28 Mamazhakypov A, Sommer N, Assmus B, Tello K, Schermuly RT, Kosanovic D, Sarybaev AS, Weissmann N, Pak O. Novel Therapeutic Targets for the Treatment of Right Ventricular Remodeling: Insights from the Pulmonary Artery Banding Model. Int J Environ Res Public Health 2021;18:8297. [PMID: 34444046 DOI: 10.3390/ijerph18168297] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Schwartz GG, Nicholls SJ, Toth PP, Sweeney M, Halliday C, Johansson JO, Wong NCW, Kulikowski E, Kalantar-Zadeh K, Ginsberg HN, Ray KK. Relation of insulin treatment for type 2 diabetes to the risk of major adverse cardiovascular events after acute coronary syndrome: an analysis of the BETonMACE randomized clinical trial. Cardiovasc Diabetol 2021;20:125. [PMID: 34158057 DOI: 10.1186/s12933-021-01311-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
30 Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, Harding IC, Ebong EE, Cameron SJ, Stewart AG, Weng J. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev 2021;73:924-67. [PMID: 34088867 DOI: 10.1124/pharmrev.120.000096] [Cited by in Crossref: 93] [Cited by in F6Publishing: 111] [Article Influence: 93.0] [Reference Citation Analysis]
31 Napoli C, Bontempo P, Palmieri V, Coscioni E, Maiello C, Donatelli F, Benincasa G. Epigenetic Therapies for Heart Failure: Current Insights and Future Potential. Vasc Health Risk Manag 2021;17:247-54. [PMID: 34079271 DOI: 10.2147/VHRM.S287082] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
32 Khan AW, Paneni F, Jandeleit-Dahm KAM. Cell-specific epigenetic changes in atherosclerosis. Clin Sci (Lond) 2021;135:1165-87. [PMID: 33988232 DOI: 10.1042/CS20201066] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
33 Kowara M, Cudnoch-Jedrzejewska A. Pathophysiology of Atherosclerotic Plaque Development-Contemporary Experience and New Directions in Research. Int J Mol Sci 2021;22:3513. [PMID: 33805303 DOI: 10.3390/ijms22073513] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
34 Li J, Urabe G, Huang Y, Zhang M, Wang B, Marcho L, Shen H, Kent KC, Guo LW. A Role for Polo-Like Kinase 4 in Vascular Fibroblast Cell-Type Transition. JACC Basic Transl Sci 2021;6:257-83. [PMID: 33778212 DOI: 10.1016/j.jacbts.2020.12.015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Wang Q, Ozer HG, Wang B, Zhang M, Urabe G, Huang Y, Kent KC, Guo LW. A hierarchical and collaborative BRD4/CEBPD partnership governs vascular smooth muscle cell inflammation. Mol Ther Methods Clin Dev 2021;21:54-66. [PMID: 33768129 DOI: 10.1016/j.omtm.2021.02.021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
36 Yang X, Yang Y, Guo J, Meng Y, Li M, Yang P, Liu X, Aung LHH, Yu T, Li Y. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. Mol Ther Nucleic Acids 2021;23:1136-60. [PMID: 33664994 DOI: 10.1016/j.omtn.2021.01.024] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
37 Ri K, Ri M, Song Y, Kim K, Kim C. The Klf6 Super-enhancer Determines Klf6 Sensitivity to BRD4 Inhibitors in Human Hepatoma (HepG2) Cells. CBIOT 2020;9:209-218. [DOI: 10.2174/2211550109999200802154246] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Shen H, Li J, Xie X, Yang H, Zhang M, Wang B, Kent KC, Plutzky J, Guo LW. BRD2 regulation of sigma-2 receptor upon cholesterol deprivation. Life Sci Alliance 2021;4:e201900540. [PMID: 33234676 DOI: 10.26508/lsa.201900540] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
39 Chen X, He Y, Fu W, Sahebkar A, Tan Y, Xu S, Li H. Histone Deacetylases (HDACs) and Atherosclerosis: A Mechanistic and Pharmacological Review. Front Cell Dev Biol. 2020;8:581015. [PMID: 33282862 DOI: 10.3389/fcell.2020.581015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
40 Wang Q, Zhang M, Urabe G, Wang B, Ozer HG, Huang Y, Kent KC, Guo L. Partnership between epigenetic reader BRD4 and transcription factor CEBPD.. [DOI: 10.1101/2020.03.27.012674] [Reference Citation Analysis]