BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fehrenbach H, Kasper M, Tschernig T, Shearman MS, Schuh D, Müller M. Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell Mol Biol (Noisy-le-grand) 1998;44:1147-57. [PMID: 9846897 [PMID: 33327744 DOI: 10.1161/atvbaha.120.315527] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 0.5] [Reference Citation Analysis]
Number Citing Articles
1 Al‐kuraishy HM, Al‐gareeb AI, Mohammed AA, Alexiou A, Papadakis M, Batiha GE. The potential link between Covid‐19 and multiple myeloma: A new saga. Immunity Inflam & Disease 2022;10. [DOI: 10.1002/iid3.701] [Reference Citation Analysis]
2 Butcher L, Zaldua J, Carnicero JA, Hawkins K, Whitley J, Mothukuri R, Evans PA, Morris K, Pillai S, Erusalimsky JD. High levels of soluble RAGE are associated with a greater risk of mortality in COVID-19 patients treated with dexamethasone. Respir Res 2022;23:303. [DOI: 10.1186/s12931-022-02220-5] [Reference Citation Analysis]
3 Al-Kuraishy HM, Al-Gareeb AI, Negm WA, Alexiou A, Batiha GE. Ursolic acid and SARS-CoV-2 infection: a new horizon and perspective. Inflammopharmacology 2022. [PMID: 35922738 DOI: 10.1007/s10787-022-01038-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Arivazhagan L, López-Díez R, Shekhtman A, Ramasamy R, Schmidt AM. Glycation and a Spark of ALEs (Advanced Lipoxidation End Products) - Igniting RAGE/Diaphanous-1 and Cardiometabolic Disease. Front Cardiovasc Med 2022;9:937071. [PMID: 35811725 DOI: 10.3389/fcvm.2022.937071] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Sherwani S, Rajendrasozhan S, Khan MWA, Saleem M, Khan M, Khan S, Raafat M, Othman Alqahtani F. Pharmacological Profile of Nigella sativa Seeds in Combating COVID-19 through In-Vitro and Molecular Docking Studies. Processes 2022;10:1346. [DOI: 10.3390/pr10071346] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Kurashima CK, Ng PK, Kendal-Wright CE. RAGE against the Machine: Can Increasing Our Understanding of RAGE Help Us to Battle SARS-CoV-2 Infection in Pregnancy? Int J Mol Sci 2022;23:6359. [PMID: 35742804 DOI: 10.3390/ijms23126359] [Reference Citation Analysis]
7 Angioni R, Bonfanti M, Caporale N, Sánchez-rodríguez R, Munari F, Savino A, Buratto D, Pagani I, Bertoldi N, Zanon C, Ferrari P, Ricciardelli E, Putaggio C, Ghezzi S, Elli F, Rotta L, Iorio F, Zonta F, Cattelan A, Vicenzi E, Molon B, Villa C, Viola A, Testa G. RAGE engagement by SARS-CoV-2 enables monocyte infection and underlies COVID-19 severity.. [DOI: 10.1101/2022.05.22.492693] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ning Q, Wu D, Wang X, Xi D, Chen T, Chen G, Wang H, Lu H, Wang M, Zhu L, Hu J, Liu T, Ma K, Han M, Luo X. The mechanism underlying extrapulmonary complications of the coronavirus disease 2019 and its therapeutic implication. Signal Transduct Target Ther 2022;7:57. [PMID: 35197452 DOI: 10.1038/s41392-022-00907-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
9 Jessop F, Schwarz B, Scott D, Roberts LM, Bohrnsen E, Hoidal JR, Bosio CM. Impairing RAGE signaling promotes survival and limits disease pathogenesis following SARS-CoV-2 infection in mice. JCI Insight 2022;7:e155896. [DOI: 10.1172/jci.insight.155896] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
10 Tandon P, Abrams ND, Carrick DM, Chander P, Dwyer J, Fuldner R, Gannot G, Laughlin M, McKie G, PrabhuDas M, Singh A, Tsai SA, Vedamony MM, Wang C, Liu CH. Metabolic Regulation of Inflammation and Its Resolution: Current Status, Clinical Needs, Challenges, and Opportunities. J Immunol 2021;207:2625-30. [PMID: 34810268 DOI: 10.4049/jimmunol.2100829] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Dhawan D, Sharma S. Systematic Review: Vulnerability of Metabolic Syndrome in COVID-19. IJND 2021. [DOI: 10.21048/ijnd.2021.58.3.27233] [Reference Citation Analysis]
12 Viurcos-Sanabria R, Escobedo G. Immunometabolic bases of type 2 diabetes in the severity of COVID-19. World J Diabetes 2021; 12(7): 1026-1041 [PMID: 34326952 DOI: 10.4239/wjd.v12.i7.1026] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Senatus L, MacLean M, Arivazhagan L, Egaña-Gorroño L, López-Díez R, Manigrasso MB, Ruiz HH, Vasquez C, Wilson R, Shekhtman A, Gugger PF, Ramasamy R, Schmidt AM. Inflammation Meets Metabolism: Roles for the Receptor for Advanced Glycation End Products Axis in Cardiovascular Disease. Immunometabolism 2021;3:e210024. [PMID: 34178389 DOI: 10.20900/immunometab20210024] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Erusalimsky JD. The use of the soluble receptor for advanced glycation-end products (sRAGE) as a potential biomarker of disease risk and adverse outcomes. Redox Biol 2021;42:101958. [PMID: 33839083 DOI: 10.1016/j.redox.2021.101958] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]