BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zong L, Wang W. CircANXA2 Promotes Myocardial Apoptosis in Myocardial Ischemia-Reperfusion Injury via Inhibiting miRNA-133 Expression. Biomed Res Int 2020;2020:8590861. [PMID: 32685535 DOI: 10.1155/2020/8590861] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu Y, Zhang J, Zhang D, Yu P, Zhang J, Yu S. Research Progress on the Role of Pyroptosis in Myocardial Ischemia-Reperfusion Injury. Cells 2022;11:3271. [DOI: 10.3390/cells11203271] [Reference Citation Analysis]
2 Qin K, Xie X, Tang W, Yang D, Peng J, Guo J, Yang J, Fan C. Non-coding RNAs to regulate cardiomyocyte proliferation: A new trend in therapeutic cardiac regeneration. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.944393] [Reference Citation Analysis]
3 Yin L, Tang Y, Yuan Y, Kontos CK. An Overview of the Advances in Research on the Molecular Function and Specific Role of Circular RNA in Cardiovascular Diseases. BioMed Research International 2022;2022:1-10. [DOI: 10.1155/2022/5154122] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Yao H, Xie Q, He Q, Zeng L, Long J, Gong Y, Li X, Li X, Liu W, Xu Z, Wu H, Zheng C, Gao Y, Li T. Pretreatment with Panaxatriol Saponin Attenuates Mitochondrial Apoptosis and Oxidative Stress to Facilitate Treatment of Myocardial Ischemia-Reperfusion Injury via the Regulation of Keap1/Nrf2 Activity. Oxidative Medicine and Cellular Longevity 2022;2022:1-20. [DOI: 10.1155/2022/9626703] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
5 Sun J, Zhu YM, Liu Q, Hu YH, Li C, Jie HH, Xu GH, Xiao RJ, Xing XL, Yu SC, Liang YP. LncRNA ROR modulates myocardial ischemia-reperfusion injury mediated by the miR-185-5p/CDK6 axis. Lab Invest 2022;102:505-14. [PMID: 35066566 DOI: 10.1038/s41374-021-00722-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Zaraiski VI, Lobov GI, Ivanova GT, Parastaeva MM, Kucher AG, Beresneva ON. Changes in microRNA expression in the urine and endotelium-dependent regulation of vassel tone in Wistar rats received a high-salt diet. Nefrologiâ (St -Peterbg ) 2022;26:75-87. [DOI: 10.36485/1561-6274-2022-26-1-75-87] [Reference Citation Analysis]
7 Li J, Lu K, Zhang X, Wang T, Li Q, Yu X, Han W, Sun L. SIRT3-mediated mitochondrial autophagy in refeeding syndrome-related myocardial injury in sepsis rats. Ann Transl Med 2022;10:211. [PMID: 35280405 DOI: 10.21037/atm-22-222] [Reference Citation Analysis]
8 Wu ATH, Lawal B, Tzeng YM, Shih CC, Shih CM. Identification of a Novel Theranostic Signature of Metabolic and Immune-Inflammatory Dysregulation in Myocardial Infarction, and the Potential Therapeutic Properties of Ovatodiolide, a Diterpenoid Derivative. Int J Mol Sci 2022;23:1281. [PMID: 35163208 DOI: 10.3390/ijms23031281] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
9 Liu XM, Zhang Z, Zhong J, Li N, Wang T, Wang L, Zhang Q. Long non-coding RNA MALAT1 modulates myocardial ischemia-reperfusion injury though the PI3K/Akt/eNOS pathway by sponging miRNA-133a-3p to target IGF1R expression. Eur J Pharmacol 2021;916:174719. [PMID: 34968461 DOI: 10.1016/j.ejphar.2021.174719] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Moukette B, Barupala NP, Aonuma T, Sepulveda M, Kawaguchi S, Kim IM. Interactions between noncoding RNAs as epigenetic regulatory mechanisms in cardiovascular diseases. Methods Cell Biol 2021;166:309-48. [PMID: 34752338 DOI: 10.1016/bs.mcb.2021.06.002] [Reference Citation Analysis]
11 Beresneva ON, Parastaeva MM, Zaraiski MI, Khasun M, Kucher AG. Effect of long-term consumption of a diet with a high sodium chloride content on microRNA expression in blood serum and urine of Cynomolgus Macaques. Nefrologiâ (St -Peterbg ) 2021;25:82-89. [DOI: 10.36485/1561-6274-2021-25-4-82-89] [Reference Citation Analysis]
12 Wang Y, He W, Ibrahim SA, He Q, Jin J. Circular RNAs: Novel Players in the Oxidative Stress-Mediated Pathologies, Biomarkers, and Therapeutic Targets. Oxid Med Cell Longev 2021;2021:6634601. [PMID: 34257814 DOI: 10.1155/2021/6634601] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Bai XF, Niu RZ, Liu J, Pan XD, Wang F, Yang W, Wang LQ, Sun LZ. Roles of noncoding RNAs in the initiation and progression of myocardial ischemia-reperfusion injury. Epigenomics 2021;13:715-43. [PMID: 33858189 DOI: 10.2217/epi-2020-0359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
14 Li Q, Li Z, Fan Z, Yang Y, Lu C. Involvement of non‑coding RNAs in the pathogenesis of myocardial ischemia/reperfusion injury (Review). Int J Mol Med 2021;47:42. [PMID: 33576444 DOI: 10.3892/ijmm.2021.4875] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
15 Wang R, Wang M, Zhou J, Wu D, Ye J, Sun G, Sun X. Saponins in Chinese Herbal Medicine Exerts Protection in Myocardial Ischemia-Reperfusion Injury: Possible Mechanism and Target Analysis. Front Pharmacol 2020;11:570867. [PMID: 33597866 DOI: 10.3389/fphar.2020.570867] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]