BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators Inflamm 2020;2020:7527953. [PMID: 32724296 DOI: 10.1155/2020/7527953] [Cited by in Crossref: 92] [Cited by in F6Publishing: 100] [Article Influence: 46.0] [Reference Citation Analysis]
Number Citing Articles
1 Pérez-guerrero P, Illanes-álvarez F, Márquez-ruiz D, Campaña-gómez I, Cuesta-sancho S, Márquez-coello M, Girón-gonzález J. Implication of Neutrophils Extracellular Traps in the Pathogenesis of SARS-CoV-2 pneumonia. Biomedicines 2022;10:2638. [DOI: 10.3390/biomedicines10102638] [Reference Citation Analysis]
2 Ngo ATP, Gollomp K. Building a better NET : Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost 2022;6. [DOI: 10.1002/rth2.12808] [Reference Citation Analysis]
3 Bello-perez M, Hurtado-tamayo J, Requena-platek R, Canton J, Sánchez-cordón PJ, Fernandez-delgado R, Enjuanes L, Sola I. MERS-CoV ORF4b is a virulence factor involved in the inflammatory pathology induced in the lungs of mice. PLoS Pathog 2022;18:e1010834. [DOI: 10.1371/journal.ppat.1010834] [Reference Citation Analysis]
4 Moser D, Feuerecker M, Biere K, Han B, Hoerl M, Schelling G, Kaufmann I, Choukér A, Woehrle T. SARS-CoV-2 pneumonia and bacterial pneumonia patients differ in a second hit immune response model. Sci Rep 2022;12. [DOI: 10.1038/s41598-022-17368-9] [Reference Citation Analysis]
5 Manan A, Pirzada RH, Haseeb M, Choi S. Toll-like Receptor Mediation in SARS-CoV-2: A Therapeutic Approach. IJMS 2022;23:10716. [DOI: 10.3390/ijms231810716] [Reference Citation Analysis]
6 Wang J, Li Q, Qiu Y, Lu H. COVID-19: imbalanced cell-mediated immune response drives to immunopathology. Emerg Microbes Infect 2022;:1-28. [PMID: 36069182 DOI: 10.1080/22221751.2022.2122579] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Bronkhorst AJ, Ungerer V, Oberhofer A, Gabriel S, Polatoglou E, Randeu H, Uhlig C, Pfister H, Mayer Z, Holdenrieder S. New Perspectives on the Importance of Cell-Free DNA Biology. Diagnostics 2022;12:2147. [DOI: 10.3390/diagnostics12092147] [Reference Citation Analysis]
8 Nishibori M. Novel aspects of sepsis pathophysiology: NETs, plasma glycoproteins, endotheliopathy and COVID-19. Journal of Pharmacological Sciences 2022;150:9-20. [DOI: 10.1016/j.jphs.2022.06.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Jiang Y, Zhao T, Zhou X, Xiang Y, Gutierrez‐castrellon P, Ma X. Inflammatory pathways in COVID‐19: Mechanism and therapeutic interventions. MedComm 2022;3. [DOI: 10.1002/mco2.154] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Zhu Y, Li X, Wang L, Hong X, Yang J. Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Front Endocrinol 2022;13:988295. [DOI: 10.3389/fendo.2022.988295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Zhang R, Sun C, Han Y, Huang L, Sheng H, Wang J, Zhang Y, Lai J, Yuan J, Chen X, Jiang C, Wu F, Wang J, Fan X, Wang J. Neutrophil autophagy and NETosis in COVID-19: perspectives. Autophagy 2022;:1-10. [PMID: 35951555 DOI: 10.1080/15548627.2022.2099206] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Vahabi M, Ghazanfari T, Sepehrnia S. Molecular Mimicry, Hyperactive Immune System, And SARS-COV-2 Are Three Prerequisites of the Autoimmune Disease Triangle Following COVID-19 Infection. International Immunopharmacology 2022. [DOI: 10.1016/j.intimp.2022.109183] [Reference Citation Analysis]
13 Bork F, Greve CL, Youn C, Chen S, Wang Y, Nasri M, Focken J, Scheurer J, Engels P, Dubbelaar M, Hipp K, Schittek B, Bugl S, Löffler MW, Skokowa J, Archer NK, Weber AN. Release of the pre-assembled naRNA-LL37 composite DAMP re-defines neutrophil extracellular traps (NETs) as intentional DAMP webs.. [DOI: 10.1101/2022.07.26.499571] [Reference Citation Analysis]
14 Swati, Rishi P, Chadha VD. Understanding the Epigenetic Mechanisms in SARS CoV-2 Infection and Potential Therapeutic Approaches. Virus Res 2022;:198853. [PMID: 35777502 DOI: 10.1016/j.virusres.2022.198853] [Reference Citation Analysis]
15 Dai J, Wang Y, Wang H, Gao Z, Wang Y, Fang M, Shi S, Zhang P, Wang H, Su Y, Yang M. Toll-Like Receptor Signaling in Severe Acute Respiratory Syndrome Coronavirus 2-Induced Innate Immune Responses and the Potential Application Value of Toll-Like Receptor Immunomodulators in Patients With Coronavirus Disease 2019. Front Microbiol 2022;13:948770. [DOI: 10.3389/fmicb.2022.948770] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Cicco S, Desantis V, Vacca A, Cazzato G, Solimando AG, Cirulli A, Noviello S, Susca C, Prete M, Brosolo G, Catena C, Lamanuzzi A, Saltarella I, Frassanito MA, Cimmino A, Ingravallo G, Resta L, Ria R, Montagnani M. Cardiovascular Risk in Patients With Takayasu Arteritis Directly Correlates With Diastolic Dysfunction and Inflammatory Cell Infiltration in the Vessel Wall: A Clinical, ex vivo and in vitro Analysis. Front Med (Lausanne) 2022;9:863150. [PMID: 35652080 DOI: 10.3389/fmed.2022.863150] [Reference Citation Analysis]
17 Gęca T, Wojtowicz K, Guzik P, Góra T. Increased Risk of COVID-19 in Patients with Diabetes Mellitus-Current Challenges in Pathophysiology, Treatment and Prevention. Int J Environ Res Public Health 2022;19:6555. [PMID: 35682137 DOI: 10.3390/ijerph19116555] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Romano A, Parrinello NL, Barchitta M, Manuele R, Puglisi F, Maugeri A, Barbato A, Triolo AM, Giallongo C, Tibullo D, La Ferla L, Botta C, Siragusa S, Iacobello C, Montineri A, Volti GL, Agodi A, Palumbo GA, Di Raimondo F. In-vitro NET-osis induced by COVID-19 sera is associated to severe clinical course in not vaccinated patients and immune-dysregulation in breakthrough infection. Sci Rep 2022;12:7237. [PMID: 35508575 DOI: 10.1038/s41598-022-11157-0] [Reference Citation Analysis]
19 Liu Y, Yan H, Jia H, Pan L, Liu J, Zhang Y, Wang J, Qin D, Ma L, Wang T. Jiedu Huoxue Decoction for Cytokine Storm and Thrombosis in Severe COVID-19: A Combined Bioinformatics and Computational Chemistry Approach. Natural Product Communications 2022;17:1934578X2210969. [DOI: 10.1177/1934578x221096966] [Reference Citation Analysis]
20 Huang Z, Zhang H, Fu X, Han L, Zhang H, Zhang L, Zhao J, Xiao D, Li H, Li P. Autophagy-driven neutrophil extracellular traps: The dawn of sepsis. Pathol Res Pract 2022;234:153896. [PMID: 35462228 DOI: 10.1016/j.prp.2022.153896] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Taha SI, Shata AK, El-Sehsah EM, Mohamed MF, Moustafa NM, Youssef MK. Comparison of COVID-19 characteristics in Egyptian patients according to their Toll-Like Receptor-4 (Asp299Gly) polymorphism. Infez Med 2022;30:96-103. [PMID: 35350262 DOI: 10.53854/liim-3001-11] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Zhu Y, Chen X, Liu X. NETosis and Neutrophil Extracellular Traps in COVID-19: Immunothrombosis and Beyond. Front Immunol 2022;13:838011. [PMID: 35309344 DOI: 10.3389/fimmu.2022.838011] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
23 Pastorek M, Dúbrava M, Celec P. On the Origin of Neutrophil Extracellular Traps in COVID-19. Front Immunol 2022;13:821007. [DOI: 10.3389/fimmu.2022.821007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
24 Suzuki K, Tsuchiya M, Yoshida S, Ogawa K, Chen W, Kanzaki M, Takahashi T, Fujita R, Li Y, Yabe Y, Aizawa T, Hagiwara Y. Tissue accumulation of neutrophil extracellular traps mediates muscle hyperalgesia in a mouse model. Sci Rep 2022;12:4136. [PMID: 35264677 DOI: 10.1038/s41598-022-07916-8] [Reference Citation Analysis]
25 Thomas G, Hirter K, Frederick E, Hausburg M, Bar-or R, Mulugeta Y, Roshon M, Mains C, Bar-or D. AMP5A modulates Toll-like receptors 7 and 8 single-stranded RNA immune responses in PMA-differentiated THP-1 and PBMC. transl med commun 2022;7. [DOI: 10.1186/s41231-022-00110-y] [Reference Citation Analysis]
26 Biterge Süt B. Epigenetic Regulation Mechanisms in Viral Infections: A Special Focus on COVID-19. Biotechnology to Combat COVID-19 2022. [DOI: 10.5772/intechopen.98866] [Reference Citation Analysis]
27 Maamar M, Artime A, Pariente E, Fierro P, Ruiz Y, Gutiérrez S, Tobalina M, Díaz-Salazar S, Ramos C, Olmos JM, Hernández JL. Post-COVID-19 syndrome, low-grade inflammation and inflammatory markers: a cross-sectional study. Curr Med Res Opin 2022;:1-26. [PMID: 35166141 DOI: 10.1080/03007995.2022.2042991] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
28 Bavaro DF, Diella L, Solimando AG, Cicco S, Buonamico E, Stasi C, Ciannarella M, Marrone M, Carpagnano F, Resta O, Carpagnano GE, Palmieri VO, Vacca A, Dell'Aera M, Dell'Erba A, Migliore G, Aricò M, Saracino A. Bamlanivimab and Etesevimab administered in an outpatient setting for SARS-CoV-2 infection. Pathog Glob Health 2022;:1-8. [PMID: 35138229 DOI: 10.1080/20477724.2021.2024030] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Zhao F, Ma Q, Yue Q, Chen H. SARS-CoV-2 Infection and Lung Regeneration. Clin Microbiol Rev 2022;:e0018821. [PMID: 35107300 DOI: 10.1128/cmr.00188-21] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Song NJ, Allen C, Vilgelm AE, Riesenberg BP, Weller KP, Reynolds K, Chakravarthy KB, Kumar A, Khatiwada A, Sun Z, Ma A, Chang Y, Yusuf M, Li A, Zeng C, Evans JP, Bucci D, Gunasena M, Xu M, Liyanage NPM, Bolyard C, Velegraki M, Liu SL, Ma Q, Devenport M, Liu Y, Zheng P, Malvestutto CD, Chung D, Li Z. Treatment with soluble CD24 attenuates COVID-19-associated systemic immunopathology. J Hematol Oncol 2022;15:5. [PMID: 35012610 DOI: 10.1186/s13045-021-01222-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
31 Nguyen VT, Chan LS. COVID-19 Infection: The Virus and Its Origin, the Variants, the Immune Defense, the Multiorgan Autoimmune Reactions, and the Targeted Treatments. AID 2022;12:568-631. [DOI: 10.4236/aid.2022.123042] [Reference Citation Analysis]
32 Rea IM, Alexander HD. Triple jeopardy in ageing: COVID-19, co-morbidities and inflamm-ageing. Ageing Res Rev 2022;73:101494. [PMID: 34688926 DOI: 10.1016/j.arr.2021.101494] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
33 Mallick U. Treatment Options in CoViD19. Cardiovascular Complications of COVID-19 2022. [DOI: 10.1007/978-3-030-90065-6_5] [Reference Citation Analysis]
34 Sinyakin IА, Andrievskaya IA, Ishutina NA, Batalova TA, Grigor'ev NR. Role of Toll-like receptors in COVID-19 pathogenesis. Bûlletenʹ fiziologii i patologii dyhaniâ 2021. [DOI: 10.36604/1998-5029-2021-82-107-115] [Reference Citation Analysis]
35 Yu Y, Xu N, Cheng Q, Deng F, Liu M, Zhu A, Min YQ, Zhu D, Huang W, Feng X, Jing X, Chen Y, Yue D, Fan Y, Shu C, Guan Q, Yang Z, Zhao J, Song W, Guo D, Liu H, Zhao J, Lan P, Shi Z, Liu Y, Chen X, Liang H. IFP35 as a promising biomarker and therapeutic target for the syndromes induced by SARS-CoV-2 or influenza virus. Cell Rep 2021;37:110126. [PMID: 34910942 DOI: 10.1016/j.celrep.2021.110126] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
36 Sasaki M, Shimoyama Y, Kodama Y, Ishikawa T. Tryptophanyl tRNA Synthetase from Human Macrophages Infected by Porphyromonas gingivalis Induces a Proinflammatory Response Associated with Atherosclerosis. Pathogens 2021;10:1648. [PMID: 34959604 DOI: 10.3390/pathogens10121648] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Soy M, Keser G, Atagündüz P. Pathogenesis and treatment of cytokine storm in COVID-19. Turk J Biol 2021;45:372-89. [PMID: 34803441 DOI: 10.3906/biy-2105-37] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
38 Day JD, Park S, Ranard BL, Singh H, Chow CC, Vodovotz Y. Divergent COVID-19 Disease Trajectories Predicted by a DAMP-Centered Immune Network Model. Front Immunol 2021;12:754127. [PMID: 34777366 DOI: 10.3389/fimmu.2021.754127] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Absalón-Aguilar A, Rull-Gabayet M, Pérez-Fragoso A, Mejía-Domínguez NR, Núñez-Álvarez C, Kershenobich-Stalnikowitz D, Sifuentes-Osornio J, Ponce-de-León A, González-Lara F, Martín-Nares E, Montesinos-Ramírez S, Ramírez-Alemón M, Ramírez-Rangel P, Márquez MF, Plata-Corona JC, Juárez-Vega G, Gómez-Martín D, Torres-Ruiz J. Colchicine Is Safe Though Ineffective in the Treatment of Severe COVID-19: a Randomized Clinical Trial (COLCHIVID). J Gen Intern Med 2021. [PMID: 34755269 DOI: 10.1007/s11606-021-07203-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
40 Liu T, Feng M, Wen Z, He Y, Lin W, Zhang M. Comparison of the Characteristics of Cytokine Storm and Immune Response Induced by SARS-CoV, MERS-CoV, and SARS-CoV-2 Infections. J Inflamm Res 2021;14:5475-87. [PMID: 34720596 DOI: 10.2147/JIR.S329697] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
41 Caillon A, Trimaille A, Favre J, Jesel L, Morel O, Kauffenstein G. Role of neutrophils, platelets, and extracellular vesicles and their interactions in COVID-19-associated thrombopathy. J Thromb Haemost 2021. [PMID: 34672094 DOI: 10.1111/jth.15566] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
42 Tan LY, Komarasamy TV, Rmt Balasubramaniam V. Hyperinflammatory Immune Response and COVID-19: A Double Edged Sword. Front Immunol 2021;12:742941. [PMID: 34659238 DOI: 10.3389/fimmu.2021.742941] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 24.0] [Reference Citation Analysis]
43 Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? Journal of Traditional Chinese Medical Sciences 2021;8:267-79. [DOI: 10.1016/j.jtcms.2021.10.001] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
44 Coleman MJ, Zimmerly KM, Yang XO. Accumulation of CD28null Senescent T-Cells Is Associated with Poorer Outcomes in COVID19 Patients. Biomolecules 2021;11:1425. [PMID: 34680058 DOI: 10.3390/biom11101425] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Huckriede J, de Vries F, Hultström M, Wichapong K, Reutelingsperger C, Lipcsey M, Garcia de Frutos P, Frithiof R, Nicolaes GAF. Histone H3 Cleavage in Severe COVID-19 ICU Patients. Front Cell Infect Microbiol 2021;11:694186. [PMID: 34568088 DOI: 10.3389/fcimb.2021.694186] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
46 Torres-Ruiz J, Absalón-Aguilar A, Nuñez-Aguirre M, Pérez-Fragoso A, Carrillo-Vázquez DA, Maravillas-Montero JL, Mejía-Domínguez NR, Llorente L, Alcalá-Carmona B, Lira-Luna J, Núñez-Álvarez C, Juárez-Vega G, Meza-Sánchez D, Hernández-Gilsoul T, Tapia-Rodríguez M, Gómez-Martín D. Neutrophil Extracellular Traps Contribute to COVID-19 Hyperinflammation and Humoral Autoimmunity. Cells 2021;10:2545. [PMID: 34685525 DOI: 10.3390/cells10102545] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 12.0] [Reference Citation Analysis]
47 Ding X, Li S, Zhu L. Potential effects of HMGB1 on viral replication and virus infection-induced inflammatory responses: A promising therapeutic target for virus infection-induced inflammatory diseases. Cytokine Growth Factor Rev 2021:S1359-6101(21)00065-4. [PMID: 34503914 DOI: 10.1016/j.cytogfr.2021.08.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
48 Pinge-Filho P. Can extracellular vesicles produced during infection by Trypanosoma cruzi function as damage-associated molecular patterns in the host? Med Hypotheses 2021;155:110667. [PMID: 34455131 DOI: 10.1016/j.mehy.2021.110667] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
49 Song NJ, Allen C, Vilgelm AE, Riesenberg BP, Weller KP, Reynolds K, Chakravarthy KB, Kumar A, Khatiwada A, Sun Z, Ma A, Chang Y, Yusuf M, Li A, Zeng C, Evans JP, Bucci D, Gunasena M, Xu M, Liyanage NPM, Bolyard C, Velegraki M, Liu SL, Ma Q, Devenport M, Liu Y, Zheng P, Malvestutto CD, Chung D, Li Z. IMMUNOLOGICAL INSIGHTS INTO THE THERAPEUTIC ROLES OF CD24Fc AGAINST SEVERE COVID-19. medRxiv 2021:2021. [PMID: 34462760 DOI: 10.1101/2021.08.18.21262258] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Cazzato G, Colagrande A, Cimmino A, Cicco G, Scarcella VS, Tarantino P, Lospalluti L, Romita P, Foti C, Demarco A, Sablone S, Candance PMV, Cicco S, Lettini T, Ingravallo G, Resta L. HMGB1-TIM3-HO1: A New Pathway of Inflammation in Skin of SARS-CoV-2 Patients? A Retrospective Pilot Study. Biomolecules 2021;11:1219. [PMID: 34439887 DOI: 10.3390/biom11081219] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
51 Huțanu A, Georgescu AM, Andrejkovits AV, Au W, Dobreanu M. Insights into Innate Immune Response Against SARS-CoV-2 Infection. Revista Romana de Medicina de Laborator 2021;29:255-69. [DOI: 10.2478/rrlm-2021-0022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
52 Calado MB, da Silva Santana CE, Crovella S. Do inflammasome impact COVID-19 severity? Virusdisease 2021;:1-11. [PMID: 34337108 DOI: 10.1007/s13337-021-00705-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
53 Cicco S, Vacca A, Cariddi C, Carella R, Altamura G, Solimando AG, Lauletta G, Pappagallo F, Cirulli A, Stragapede A, Susca N, Grasso S, Ria R. Imaging Evaluation of Pulmonary and Non-Ischaemic Cardiovascular Manifestations of COVID-19. Diagnostics (Basel) 2021;11:1271. [PMID: 34359355 DOI: 10.3390/diagnostics11071271] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Maamar M, Artime A, Pariente E, Fierro P, Ruiz Y, Gutiérrez S, González R, Bustamante E, Pinedo G, Rodríguez B, Peña A, Gómez MA, Urarte C, Pérez-pajares I, Tobalina M, Secada C, Díaz-salazar S, Pini S, Ramos C, Olmos JM, Hernández JL. POST-COVID-19 SYNDROME, INFLAMMATORY MARKERS AND SEX DIFFERENCES.. [DOI: 10.1101/2021.07.07.21260092] [Reference Citation Analysis]
55 Rowlands M, Segal F, Hartl D. Myeloid-Derived Suppressor Cells as a Potential Biomarker and Therapeutic Target in COVID-19. Front Immunol 2021;12:697405. [PMID: 34220859 DOI: 10.3389/fimmu.2021.697405] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
56 Danladi J, Sabir H. Innate immunity, inflammation activation and heat-shock protein in COVID-19 pathogenesis. J Neuroimmunol 2021;358:577632. [PMID: 34186336 DOI: 10.1016/j.jneuroim.2021.577632] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
57 Chiappalupi S, Salvadori L, Donato R, Riuzzi F, Sorci G. Hyperactivated RAGE in Comorbidities as a Risk Factor for Severe COVID-19-The Role of RAGE-RAS Crosstalk. Biomolecules 2021;11:876. [PMID: 34204735 DOI: 10.3390/biom11060876] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
58 Hazeldine J, Lord JM. Neutrophils and COVID-19: Active Participants and Rational Therapeutic Targets. Front Immunol 2021;12:680134. [PMID: 34149717 DOI: 10.3389/fimmu.2021.680134] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 23.0] [Reference Citation Analysis]
59 Nicosia RF, Ligresti G, Caporarello N, Akilesh S, Ribatti D. COVID-19 Vasculopathy: Mounting Evidence for an Indirect Mechanism of Endothelial Injury. Am J Pathol 2021;191:1374-84. [PMID: 34033751 DOI: 10.1016/j.ajpath.2021.05.007] [Cited by in Crossref: 35] [Cited by in F6Publishing: 39] [Article Influence: 35.0] [Reference Citation Analysis]
60 Bautista-Becerril B, Campi-Caballero R, Sevilla-Fuentes S, Hernández-Regino LM, Hanono A, Flores-Bustamante A, González-Flores J, García-Ávila CA, Aquino-Gálvez A, Castillejos-López M, Juárez-Cisneros A, Camarena A. Immunothrombosis in COVID-19: Implications of Neutrophil Extracellular Traps. Biomolecules 2021;11:694. [PMID: 34066385 DOI: 10.3390/biom11050694] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
61 Bozorgmehr N, Mashhouri S, Perez Rosero E, Xu L, Shahbaz S, Sligl W, Osman M, Kutsogiannis DJ, MacIntyre E, O'Neil CR, Elahi S. Galectin-9, a Player in Cytokine Release Syndrome and a Surrogate Diagnostic Biomarker in SARS-CoV-2 Infection. mBio 2021;12:e00384-21. [PMID: 33947753 DOI: 10.1128/mBio.00384-21] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 19.0] [Reference Citation Analysis]
62 König B, Koch AN, Bellanti JA. Studies of mitochondrial and nuclear DNA released from food allergen-activated neutrophils. Implications for non-IgE food allergy. Allergy Asthma Proc 2021;42:e59-70. [PMID: 33980341 DOI: 10.2500/aap.2021.42.210021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
63 Stegelmeier AA, Darzianiazizi M, Hanada K, Sharif S, Wootton SK, Bridle BW, Karimi K. Type I Interferon-Mediated Regulation of Antiviral Capabilities of Neutrophils. Int J Mol Sci 2021;22:4726. [PMID: 33946935 DOI: 10.3390/ijms22094726] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
64 Ge Y, Huang M, Yao YM. The Effect and Regulatory Mechanism of High Mobility Group Box-1 Protein on Immune Cells in Inflammatory Diseases. Cells 2021;10:1044. [PMID: 33925132 DOI: 10.3390/cells10051044] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 11.0] [Reference Citation Analysis]
65 Feldman C, Anderson R. The role of co-infections and secondary infections in patients with COVID-19. Pneumonia (Nathan) 2021;13:5. [PMID: 33894790 DOI: 10.1186/s41479-021-00083-w] [Cited by in Crossref: 91] [Cited by in F6Publishing: 97] [Article Influence: 91.0] [Reference Citation Analysis]
66 Nishibori M, Stonestreet BS. Understanding of COVID-19 Pathology: Much More Attention to Plasma Proteins. Front Immunol 2021;12:656099. [PMID: 33841442 DOI: 10.3389/fimmu.2021.656099] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
67 Tanwar O, Soni A, Prajapat P, Shivhare T, Pandey P, Samaiya PK, Pandey SP, Kar P. Ethyl Pyruvate as a Potential Defense Intervention against Cytokine Storm in COVID-19? ACS Omega 2021;6:7754-60. [PMID: 33778286 DOI: 10.1021/acsomega.1c00157] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Huang W, Zhou H, Hodgkinson C, Montero A, Goldman D, Chang SL. Network Meta-Analysis on the Mechanisms Underlying Alcohol Augmentation of COVID-19 Pathologies. Alcohol Clin Exp Res 2021;45:675-88. [PMID: 33583045 DOI: 10.1111/acer.14573] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 13.0] [Reference Citation Analysis]
69 Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020;17:765-83. [PMID: 33183203 DOI: 10.2174/1567202617999201111195232] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
70 Peddapalli A, Gehani M, Kalle AM, Peddapalli SR, Peter AE, Sharad S. Demystifying Excess Immune Response in COVID-19 to Reposition an Orphan Drug for Down-Regulation of NF-κB: A Systematic Review. Viruses 2021;13:378. [PMID: 33673529 DOI: 10.3390/v13030378] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
71 Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci 2021;22:2108. [PMID: 33672738 DOI: 10.3390/ijms22042108] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 29.0] [Reference Citation Analysis]
72 Yokota S, Miyamae T, Kuroiwa Y, Nishioka K. Novel Coronavirus Disease 2019 (COVID-19) and Cytokine Storms for More Effective Treatments from an Inflammatory Pathophysiology. J Clin Med 2021;10:801. [PMID: 33671159 DOI: 10.3390/jcm10040801] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
73 Mozzini C, Cicco S, Setti A, Racanelli V, Vacca A, Calciano L, Pesce G, Girelli D. Spotlight on Cardiovascular Scoring Systems in Covid-19: Severity Correlations in Real-world Setting. Curr Probl Cardiol 2021;46:100819. [PMID: 33631706 DOI: 10.1016/j.cpcardiol.2021.100819] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
74 Khanmohammadi S, Rezaei N. Role of Toll-like receptors in the pathogenesis of COVID-19. J Med Virol 2021;93:2735-9. [PMID: 33506952 DOI: 10.1002/jmv.26826] [Cited by in Crossref: 115] [Cited by in F6Publishing: 126] [Article Influence: 115.0] [Reference Citation Analysis]
75 Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, Liang J, Tang Y, Su M, Luo X, Yang Y, Shi Y, Wang H, Zhou Y, Liao Q. The cancer metabolic reprogramming and immune response. Mol Cancer 2021;20:28. [PMID: 33546704 DOI: 10.1186/s12943-021-01316-8] [Cited by in Crossref: 66] [Cited by in F6Publishing: 84] [Article Influence: 66.0] [Reference Citation Analysis]
76 Roberts J, Pritchard AL, Treweeke AT, Rossi AG, Brace N, Cahill P, MacRury SM, Wei J, Megson IL. Why Is COVID-19 More Severe in Patients With Diabetes? The Role of Angiotensin-Converting Enzyme 2, Endothelial Dysfunction and the Immunoinflammatory System. Front Cardiovasc Med 2020;7:629933. [PMID: 33614744 DOI: 10.3389/fcvm.2020.629933] [Cited by in Crossref: 23] [Cited by in F6Publishing: 30] [Article Influence: 23.0] [Reference Citation Analysis]
77 Sang ER, Tian Y, Miller LC, Sang Y. Epigenetic Evolution of ACE2 and IL-6 Genes: Non-Canonical Interferon-Stimulated Genes Correlate to COVID-19 Susceptibility in Vertebrates. Genes (Basel) 2021;12:154. [PMID: 33503821 DOI: 10.3390/genes12020154] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 23.0] [Reference Citation Analysis]
78 Solimando AG, Susca N, Borrelli P, Prete M, Lauletta G, Pappagallo F, Buono R, Inglese G, Forina BM, Bochicchio D, Capobianco M, Carrieri V, Cicco S, Leone P, Silvestris N, Saracino A, Ria R, Procacci V, Migliore G, Vacca A, Racanelli V. Short-Term Variations in Neutrophil-to-Lymphocyte and Urea-to-Creatinine Ratios Anticipate Intensive Care Unit Admission of COVID-19 Patients in the Emergency Department. Front Med (Lausanne) 2020;7:625176. [PMID: 33553217 DOI: 10.3389/fmed.2020.625176] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
79 Zarrilli G, Angerilli V, Businello G, Sbaraglia M, Traverso G, Fortarezza F, Rizzo S, De Gaspari M, Basso C, Calabrese F, Dei Tos AP, Fassan M. The Immunopathological and Histological Landscape of COVID-19-Mediated Lung Injury. Int J Mol Sci 2021;22:974. [PMID: 33478107 DOI: 10.3390/ijms22020974] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 14.0] [Reference Citation Analysis]
80 Masso-silva JA, Moshensky A, Lam MTY, Odish M, Patel A, Xu L, Hansen E, Trescott S, Nguyen C, Kim R, Perofsky K, Perera S, Ma L, Pham J, Rolfsen M, Olay J, Shin J, Dan JM, Abbott R, Ramirez S, Alexander TH, Lin GY, Fuentes AL, Advani I, Gunge D, Pretorius V, Malhotra A, Sun X, Duran J, Crotty S, Coufal NG, Meier A, Alexander LEC. Increased peripheral blood neutrophil activation phenotypes and NETosis in critically ill COVID-19 patients.. [DOI: 10.1101/2021.01.14.21249831] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
81 Janiuk K, Jabłońska E, Garley M. Significance of NETs Formation in COVID-19. Cells 2021;10:151. [PMID: 33466589 DOI: 10.3390/cells10010151] [Cited by in Crossref: 39] [Cited by in F6Publishing: 43] [Article Influence: 39.0] [Reference Citation Analysis]
82 Santos JC, Ribeiro ML, Gambero A. The Impact of Polyphenols-Based Diet on the Inflammatory Profile in COVID-19 Elderly and Obese Patients. Front Physiol 2020;11:612268. [PMID: 33584335 DOI: 10.3389/fphys.2020.612268] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
83 Klopf J, Brostjan C, Eilenberg W, Neumayer C. Neutrophil Extracellular Traps and Their Implications in Cardiovascular and Inflammatory Disease. Int J Mol Sci 2021;22:E559. [PMID: 33429925 DOI: 10.3390/ijms22020559] [Cited by in Crossref: 53] [Cited by in F6Publishing: 58] [Article Influence: 53.0] [Reference Citation Analysis]
84 Lee C, Choi WJ. Overview of COVID-19 inflammatory pathogenesis from the therapeutic perspective. Arch Pharm Res 2021;44:99-116. [PMID: 33398692 DOI: 10.1007/s12272-020-01301-7] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 39.0] [Reference Citation Analysis]
85 Sen R, Garbati M, Bryant K, Lu Y. Epigenetic mechanisms influencing COVID-19. Genome 2021;64:372-85. [PMID: 33395363 DOI: 10.1139/gen-2020-0135] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 23.0] [Reference Citation Analysis]
86 Motta NAV, Autran LJ, Brazão SC, Lopes RO, Scaramello CBV, Lima GF, Brito FCF. Could cilostazol be beneficial in COVID-19 treatment? Thinking about phosphodiesterase-3 as a therapeutic target. Int Immunopharmacol 2021;92:107336. [PMID: 33418248 DOI: 10.1016/j.intimp.2020.107336] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
87 Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020;8:619221. [PMID: 33392206 DOI: 10.3389/fcell.2020.619221] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
88 Chen R, Huang Y, Quan J, Liu J, Wang H, Billiar TR, Lotze MT, Zeh HJ, Kang R, Tang D. HMGB1 as a potential biomarker and therapeutic target for severe COVID-19. Heliyon 2020;6:e05672. [PMID: 33313438 DOI: 10.1016/j.heliyon.2020.e05672] [Cited by in Crossref: 69] [Cited by in F6Publishing: 56] [Article Influence: 34.5] [Reference Citation Analysis]
89 Borges L, Pithon-Curi TC, Curi R, Hatanaka E. COVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps. Mediators Inflamm 2020;2020:8829674. [PMID: 33343232 DOI: 10.1155/2020/8829674] [Cited by in Crossref: 75] [Cited by in F6Publishing: 85] [Article Influence: 37.5] [Reference Citation Analysis]
90 Cavalcante-Silva LHA, Carvalho DCM, Lima ÉA, Galvão JGFM, da Silva JSF, Sales-Neto JM, Rodrigues-Mascarenhas S. Neutrophils and COVID-19: The road so far. Int Immunopharmacol 2021;90:107233. [PMID: 33290963 DOI: 10.1016/j.intimp.2020.107233] [Cited by in Crossref: 81] [Cited by in F6Publishing: 65] [Article Influence: 40.5] [Reference Citation Analysis]
91 Chang H, Zou Z. Targeting autophagy to overcome drug resistance: further developments. J Hematol Oncol 2020;13:159. [PMID: 33239065 DOI: 10.1186/s13045-020-01000-2] [Cited by in Crossref: 41] [Cited by in F6Publishing: 50] [Article Influence: 20.5] [Reference Citation Analysis]
92 Sakoulas G, Geriak M, Kullar R, Greenwood KL, Habib M, Vyas A, Ghafourian M, Dintyala VNK, Haddad F. Intravenous Immunoglobulin Plus Methylprednisolone Mitigate Respiratory Morbidity in Coronavirus Disease 2019. Crit Care Explor 2020;2:e0280. [PMID: 33225306 DOI: 10.1097/CCE.0000000000000280] [Cited by in Crossref: 22] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
93 Marley J, Marley N. Characterising COVID-19 as a Viral Clotting Fever: A Mixed Methods Scoping Review.. [DOI: 10.1101/2020.11.10.20228809] [Reference Citation Analysis]
94 Briguglio M, Porta M, Zuffada F, Bona AR, Crespi T, Pino F, Perazzo P, Mazzocchi M, Giorgino R, De Angelis G, Ielasi A, De Blasio G, Turiel M. SARS-CoV-2 Aiming for the Heart: A Multicenter Italian Perspective About Cardiovascular Issues in COVID-19. Front Physiol 2020;11:571367. [PMID: 33240098 DOI: 10.3389/fphys.2020.571367] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
95 Fehrenbach H, Kasper M, Tschernig T, Shearman MS, Schuh D, Müller M. Receptor for advanced glycation endproducts (RAGE) exhibits highly differential cellular and subcellular localisation in rat and human lung. Cell Mol Biol (Noisy-le-grand) 1998;44:1147-57. [PMID: 9846897 [PMID: 33327744 DOI: 10.1161/atvbaha.120.315527] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 0.5] [Reference Citation Analysis]