BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang G, Wan H, Jian X, Li Y, Ouyang J, Tan X, Zhao Y, Lin Y, Xie L. INeo-Epp: A Novel T-Cell HLA Class-I Immunogenicity or Neoantigenic Epitope Prediction Method Based on Sequence-Related Amino Acid Features. Biomed Res Int 2020;2020:5798356. [PMID: 32626747 DOI: 10.1155/2020/5798356] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
Number Citing Articles
1 Cai Y, Chen R, Gao S, Li W, Liu Y, Su G, Song M, Jiang M, Jiang C, Zhang X. Artificial intelligence applied in neoantigen identification facilitates personalized cancer immunotherapy. Front Oncol 2022;12:1054231. [PMID: 36698417 DOI: 10.3389/fonc.2022.1054231] [Reference Citation Analysis]
2 Pfitzer L, Lybaert L, Bogaert C, Fant B. Improving T-cell mediated immunogenic epitope identification via machine learning: the neoIM model.. [DOI: 10.1101/2022.06.03.494687] [Reference Citation Analysis]
3 Yu J, Wang L, Kong X, Cao Y, Zhang M, Sun Z, Liu Y, Wang J, Shen B, Bo X, Feng J. CAD v1.0: Cancer Antigens Database Platform for Cancer Antigen Algorithm Development and Information Exploration. Front Bioeng Biotechnol 2022;10:819583. [DOI: 10.3389/fbioe.2022.819583] [Reference Citation Analysis]
4 Lu M, Xu L, Jian X, Tan X, Zhao J, Liu Z, Zhang Y, Liu C, Chen L, Lin Y, Xie L. dbPepNeo2.0: A Database for Human Tumor Neoantigen Peptides From Mass Spectrometry and TCR Recognition. Front Immunol 2022;13:855976. [PMID: 35493528 DOI: 10.3389/fimmu.2022.855976] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Fotakis G, Trajanoski Z, Rieder D. Computational cancer neoantigen prediction: current status and recent advances. Immunooncol Technol 2021;12:100052. [PMID: 35755950 DOI: 10.1016/j.iotech.2021.100052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Li G, Iyer B, Prasath VBS, Ni Y, Salomonis N. DeepImmuno: deep learning-empowered prediction and generation of immunogenic peptides for T-cell immunity. Brief Bioinform 2021;22:bbab160. [PMID: 34009266 DOI: 10.1093/bib/bbab160] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
7 Li G, Iyer B, Prasath VBS, Ni Y, Salomonis N. DeepImmuno: Deep learning-empowered prediction and generation of immunogenic peptides for T cell immunity. bioRxiv 2020:2020. [PMID: 33398286 DOI: 10.1101/2020.12.24.424262] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
8 Gopanenko AV, Kosobokova EN, Kosorukov VS. Main Strategies for the Identification of Neoantigens. Cancers (Basel) 2020;12:E2879. [PMID: 33036391 DOI: 10.3390/cancers12102879] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]