BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Snider KH, Sullivan KA, Obrietan K. Circadian Regulation of Hippocampal-Dependent Memory: Circuits, Synapses, and Molecular Mechanisms. Neural Plast 2018;2018:7292540. [PMID: 29593785 DOI: 10.1155/2018/7292540] [Cited by in Crossref: 41] [Cited by in F6Publishing: 45] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Valeri J, O’donovan SM, Wang W, Sinclair D, Bollavarapu R, Gisabella B, Platt D, Stockmeier C, Pantazopoulos H. Altered expression of somatostatin signaling molecules and clock genes in the hippocampus of subjects with substance use disorder. Front Neurosci 2022;16:903941. [DOI: 10.3389/fnins.2022.903941] [Reference Citation Analysis]
2 Deibel SH, Lewis LM, Cleary J, Cassell TTS, Skinner DM, Thorpe CM. Unpredictable mealtimes rather than social jetlag affects acquisition and retention of hippocampal dependent memory. Behav Processes 2022;:104704. [PMID: 35842197 DOI: 10.1016/j.beproc.2022.104704] [Reference Citation Analysis]
3 Gessner N, Shinbashi M, Chuluun B, Heller C, Pittaras E. Handling, task complexity, time-of-day, and sleep deprivation as dynamic modulators of recognition memory in mice. Physiol Behav 2022;251:113803. [PMID: 35398333 DOI: 10.1016/j.physbeh.2022.113803] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Morena M, Santori A, Campolongo P. Circadian regulation of memory under stress: Endocannabinoids matter. Neurosci Biobehav Rev 2022;138:104712. [PMID: 35643119 DOI: 10.1016/j.neubiorev.2022.104712] [Reference Citation Analysis]
5 Hoyt KR, Obrietan K. Circadian clocks, cognition, and Alzheimer's disease: synaptic mechanisms, signaling effectors, and chronotherapeutics. Mol Neurodegener 2022;17:35. [PMID: 35525980 DOI: 10.1186/s13024-022-00537-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Shigemoto M, Nakatsuka H, Ohtubo Y, Natsume K. Diurnal rhythm regulates the frequency of carbachol-induced beta oscillation via inhibitory neural system in rat hippocampus. Cogn Neurodyn. [DOI: 10.1007/s11571-021-09736-4] [Reference Citation Analysis]
7 Asadian N, Parsaie H, Vafaei AA, Dadkhah M, Omoumi S, Sedaghat K. Chronic light deprivation induces different effects on spatial and fear memory and hippocampal BDNF/TRKB expression during light and dark phases of rat diurnal rhythm. Behav Brain Res 2021;418:113638. [PMID: 34695541 DOI: 10.1016/j.bbr.2021.113638] [Reference Citation Analysis]
8 Urban MW, Lo C, Bodinayake KK, Brunswick CA, Murakami S, Heimann AC, Kwapis JL. The circadian clock gene Per1 modulates context fear memory formation within the retrosplenial cortex in a sex-specific manner. Neurobiol Learn Mem 2021;185:107535. [PMID: 34624524 DOI: 10.1016/j.nlm.2021.107535] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
9 Brancati GE, Rawas C, Ghestem A, Bernard C, Ivanov AI. Spatio-temporal heterogeneity in hippocampal metabolism in control and epilepsy conditions. Proc Natl Acad Sci U S A 2021;118:e2013972118. [PMID: 33692123 DOI: 10.1073/pnas.2013972118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
10 Salehinejad MA, Wischnewski M, Ghanavati E, Mosayebi-Samani M, Kuo MF, Nitsche MA. Cognitive functions and underlying parameters of human brain physiology are associated with chronotype. Nat Commun 2021;12:4672. [PMID: 34344864 DOI: 10.1038/s41467-021-24885-0] [Cited by in F6Publishing: 16] [Reference Citation Analysis]
11 Tandoc MC, Bayda M, Poskanzer C, Cho E, Cox R, Stickgold R, Schapiro AC. Examining the effects of time of day and sleep on generalization. PLoS One 2021;16:e0255423. [PMID: 34339459 DOI: 10.1371/journal.pone.0255423] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Fusilier AR, Davis JA, Paul JR, Yates SD, McMeekin LJ, Goode LK, Mokashi MV, Remiszewski N, van Groen T, Cowell RM, McMahon LL, Roberson ED, Gamble KL. Dysregulated clock gene expression and abnormal diurnal regulation of hippocampal inhibitory transmission and spatial memory in amyloid precursor protein transgenic mice. Neurobiol Dis 2021;158:105454. [PMID: 34333153 DOI: 10.1016/j.nbd.2021.105454] [Reference Citation Analysis]
13 Zheng Y, Zhang YM, Tang ZS, Du JK, Guo DW, Xu YJ, Sheng H, Lu JQ, Ni X. Spatial learning and memory deficits induced by prenatal glucocorticoid exposure depend on hippocampal CRHR1 and CXCL5 signaling in rats. J Neuroinflammation 2021;18:85. [PMID: 33810797 DOI: 10.1186/s12974-021-02129-8] [Reference Citation Analysis]
14 Lehr AB, Kumar A, Tetzlaff C, Hafting T, Fyhn M, Stöber TM. CA2 beyond social memory: Evidence for a fundamental role in hippocampal information processing. Neurosci Biobehav Rev 2021;126:398-412. [PMID: 33775693 DOI: 10.1016/j.neubiorev.2021.03.020] [Reference Citation Analysis]
15 Zhang Y, Zhou Y, Zhang X, Wang L, Zhong Y. Clock neurons gate memory extinction in Drosophila. Curr Biol 2021;31:1337-1343.e4. [PMID: 33545046 DOI: 10.1016/j.cub.2021.01.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Stehle JH, Zemmar A, Hausmann L. How to time the time - A preface to the special issue Circadian Rhythms in the Brain. J Neurochem 2021;157:6-10. [PMID: 33724468 DOI: 10.1111/jnc.15311] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Mahoney H, Peterson E, Justin H, Gonzalez D, Cardona C, Stevanovic K, Faulkner J, Yunus A, Portugues A, Henriksen A, Burns C, McNeill C, Gamsby J, Gulick D. Inhibition of casein kinase 1 δ/ε improves cognitive performance in adult C57BL/6J mice. Sci Rep 2021;11:4746. [PMID: 33637777 DOI: 10.1038/s41598-021-83957-9] [Reference Citation Analysis]
18 Harkness JH, Gonzalez AE, Bushana PN, Jorgensen ET, Hegarty DM, Di Nardo AA, Prochiantz A, Wisor JP, Aicher SA, Brown TE, Sorg BA. Diurnal changes in perineuronal nets and parvalbumin neurons in the rat medial prefrontal cortex. Brain Struct Funct 2021;226:1135-53. [PMID: 33585984 DOI: 10.1007/s00429-021-02229-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
19 Buijink MR, Michel S. A multi-level assessment of the bidirectional relationship between aging and the circadian clock. J Neurochem 2021;157:73-94. [PMID: 33370457 DOI: 10.1111/jnc.15286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
20 Soni SK, Basu P, Singaravel M, Sharma R, Pandi-Perumal SR, Cardinali DP, Reiter RJ. Sirtuins and the circadian clock interplay in cardioprotection: focus on sirtuin 1. Cell Mol Life Sci 2021;78:2503-15. [PMID: 33388853 DOI: 10.1007/s00018-020-03713-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
21 Yamakawa GR, Brady RD, Sun M, McDonald SJ, Shultz SR, Mychasiuk R. The interaction of the circadian and immune system: Desynchrony as a pathological outcome to traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2020;9:100058. [PMID: 33364525 DOI: 10.1016/j.nbscr.2020.100058] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Reshetnikov VV, Kisaretova PE, Ershov NI, Shulyupova AS, Oshchepkov DY, Klimova NV, Ivanchihina AV, Merkulova TI, Bondar NP. Genes associated with cognitive performance in the Morris water maze: an RNA-seq study. Sci Rep 2020;10:22078. [PMID: 33328525 DOI: 10.1038/s41598-020-78997-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
23 Aten S, Kalidindi A, Yoon H, Rumbaugh G, Hoyt KR, Obrietan K. SynGAP is expressed in the murine suprachiasmatic nucleus and regulates circadian-gated locomotor activity and light-entrainment capacity. Eur J Neurosci 2021;53:732-49. [PMID: 33174316 DOI: 10.1111/ejn.15043] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
24 Song N, Du J, Gao Y, Yang S. Epitranscriptome of the ventral tegmental area in a deep brain-stimulated chronic unpredictable mild stress mouse model. Transl Neurosci 2020;11:402-18. [PMID: 33343932 DOI: 10.1515/tnsci-2020-0146] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Chatterjee S, Angelakos CC, Bahl E, Hawk JD, Gaine ME, Poplawski SG, Schneider-Anthony A, Yadav M, Porcari GS, Cassel JC, Giese KP, Michaelson JJ, Lyons LC, Boutillier AL, Abel T. The CBP KIX domain regulates long-term memory and circadian activity. BMC Biol 2020;18:155. [PMID: 33121486 DOI: 10.1186/s12915-020-00886-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
26 Hozer C, Pifferi F. Physiological and cognitive consequences of a daily 26 h photoperiod in a primate: exploring the underlying mechanisms of the circadian resonance theory. Proc Biol Sci 2020;287:20201079. [PMID: 32693726 DOI: 10.1098/rspb.2020.1079] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Zhang B, Zhao J, Wang Z, Xu L, Liu A, Du G. DL0410 attenuates oxidative stress and neuroinflammation via BDNF/TrkB/ERK/CREB and Nrf2/HO-1 activation. Int Immunopharmacol 2020;86:106729. [PMID: 32645628 DOI: 10.1016/j.intimp.2020.106729] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
28 Frank MG. Clocking in: a circadian model of synaptic plasticity. Current Opinion in Physiology 2020;15:96-103. [DOI: 10.1016/j.cophys.2019.12.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Raven F, Bolsius YG, Renssen LV, Meijer EL, Zee EA, Meerlo P, Havekes R. Elucidating the role of protein synthesis in hippocampus‐dependent memory consolidation across the day and night. Eur J Neurosci 2020. [DOI: 10.1111/ejn.14684] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
30 Khaksari M, Nakhaei P, Khastar H, Bakhtazad A, Rahimi K, Garmabi B. Circadian fluctuation in curiosity is a risk factor for morphine preference. Biological Rhythm Research. [DOI: 10.1080/09291016.2020.1719682] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Adler P, Chiang CK, Mayne J, Ning Z, Zhang X, Xu B, Cheng HM, Figeys D. Aging Disrupts the Circadian Patterns of Protein Expression in the Murine Hippocampus. Front Aging Neurosci 2019;11:368. [PMID: 32009941 DOI: 10.3389/fnagi.2019.00368] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
32 Horsey EA, Maletta T, Turner H, Cole C, Lehmann H, Fournier NM. Chronic Jet Lag Simulation Decreases Hippocampal Neurogenesis and Enhances Depressive Behaviors and Cognitive Deficits in Adult Male Rats. Front Behav Neurosci 2019;13:272. [PMID: 31969809 DOI: 10.3389/fnbeh.2019.00272] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 5.5] [Reference Citation Analysis]
33 Sawicka K, Hale CR, Park CY, Fak JJ, Gresack JE, Van Driesche SJ, Kang JJ, Darnell JC, Darnell RB. FMRP has a cell-type-specific role in CA1 pyramidal neurons to regulate autism-related transcripts and circadian memory. Elife 2019;8:e46919. [PMID: 31860442 DOI: 10.7554/eLife.46919] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 7.3] [Reference Citation Analysis]
34 Kinlein SA, Karatsoreos IN. The hypothalamic-pituitary-adrenal axis as a substrate for stress resilience: Interactions with the circadian clock. Front Neuroendocrinol 2020;56:100819. [PMID: 31863788 DOI: 10.1016/j.yfrne.2019.100819] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
35 Martinez D, Santin JM, Schulz D, Nadim F. The differential contribution of pacemaker neurons to synaptic transmission in the pyloric network of the Jonah crab, Cancer borealis. J Neurophysiol 2019;122:1623-33. [PMID: 31411938 DOI: 10.1152/jn.00038.2019] [Reference Citation Analysis]
36 Campos EJ, Martins J, Brudzewsky D, Woldbye DPD, Ambrósio AF. Neuropeptide Y system mRNA expression changes in the hippocampus of a type I diabetes rat model. Ann Anat 2020;227:151419. [PMID: 31563570 DOI: 10.1016/j.aanat.2019.151419] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
37 Kim EC, Patel J, Zhang J, Soh H, Rhodes JS, Tzingounis AV, Chung HJ. Heterozygous loss of epilepsy gene KCNQ2 alters social, repetitive and exploratory behaviors. Genes Brain Behav 2020;19:e12599. [PMID: 31283873 DOI: 10.1111/gbb.12599] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
38 S S, Sriram K. Multi-scale modeling of the circadian modulation of learning and memory. PLoS One 2019;14:e0219915. [PMID: 31323054 DOI: 10.1371/journal.pone.0219915] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
39 Jilg A, Bechstein P, Saade A, Dick M, Li TX, Tosini G, Rami A, Zemmar A, Stehle JH. Melatonin modulates daytime-dependent synaptic plasticity and learning efficiency. J Pineal Res 2019;66:e12553. [PMID: 30618149 DOI: 10.1111/jpi.12553] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
40 Paul JR, Davis JA, Goode LK, Becker BK, Fusilier A, Meador-Woodruff A, Gamble KL. Circadian regulation of membrane physiology in neural oscillators throughout the brain. Eur J Neurosci 2020;51:109-38. [PMID: 30633846 DOI: 10.1111/ejn.14343] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 7.3] [Reference Citation Analysis]
41 Li M, You M, Li S, Qiu Z, Wang Y. Effects of maternal exposure to nonylphenol on learning and memory in offspring involve inhibition of BDNF-PI3K/Akt signaling. Brain Res Bull 2019;146:270-8. [PMID: 30660719 DOI: 10.1016/j.brainresbull.2019.01.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
42 Leite Góes Gitai D, de Andrade TG, Dos Santos YDR, Attaluri S, Shetty AK. Chronobiology of limbic seizures: Potential mechanisms and prospects of chronotherapy for mesial temporal lobe epilepsy. Neurosci Biobehav Rev 2019;98:122-34. [PMID: 30629979 DOI: 10.1016/j.neubiorev.2019.01.004] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
43 Hannou L, Roy P, Ballester Roig MN, Mongrain V. Transcriptional control of synaptic components by the clock machinery. Eur J Neurosci 2020;51:241-67. [DOI: 10.1111/ejn.14294] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
44 Woodruff ER, Chun LE, Hinds LR, Varra NM, Tirado D, Morton SJ, McClung CA, Spencer RL. Coordination between Prefrontal Cortex Clock Gene Expression and Corticosterone Contributes to Enhanced Conditioned Fear Extinction Recall. eNeuro 2018;5:ENEURO. [PMID: 30627637 DOI: 10.1523/ENEURO.0455-18.2018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
45 Snider KH, Obrietan K. Modulation of learning and memory by the genetic disruption of circadian oscillator populations. Physiol Behav 2018;194:387-93. [PMID: 29944860 DOI: 10.1016/j.physbeh.2018.06.035] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]