BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Thundimadathil J. Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 2012;2012:967347. [PMID: 23316341 DOI: 10.1155/2012/967347] [Cited by in Crossref: 198] [Cited by in F6Publishing: 191] [Article Influence: 19.8] [Reference Citation Analysis]
Number Citing Articles
1 Nejabat M, Eisvand F, Soltani F, Alibolandi M, Mohammad Taghdisi S, Abnous K, Hadizadeh F, Ramezani M. Combination therapy using Smac peptide and doxorubicin-encapsulated MUC 1-targeted polymeric nanoparticles to sensitize cancer cells to chemotherapy: An in vitro and in vivo study. Int J Pharm 2020;587:119650. [PMID: 32679263 DOI: 10.1016/j.ijpharm.2020.119650] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
2 Zong J, Cobb SL, Cameron NR. Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomater Sci 2017;5:872-86. [PMID: 28304023 DOI: 10.1039/c7bm00006e] [Cited by in Crossref: 89] [Cited by in F6Publishing: 23] [Article Influence: 22.3] [Reference Citation Analysis]
3 Jaber S, Nemska V, Iliev I, Ivanova E, Foteva T, Georgieva N, Givechev I, Naydenova E, Karadjova V, Danalev D. Synthesis and Biological Studies on (KLAKLAK)2-NH2 Analog Containing Unnatural Amino Acid β-Ala and Conjugates with Second Pharmacophore. Molecules 2021;26:7321. [PMID: 34885902 DOI: 10.3390/molecules26237321] [Reference Citation Analysis]
4 Xu L, Liang G, Wang L, Liao C. A Novel Hybrid Sequence-Based Model for Identifying Anticancer Peptides. Genes (Basel) 2018;9:E158. [PMID: 29534013 DOI: 10.3390/genes9030158] [Cited by in Crossref: 60] [Cited by in F6Publishing: 48] [Article Influence: 15.0] [Reference Citation Analysis]
5 Yi HC, You ZH, Zhou X, Cheng L, Li X, Jiang TH, Chen ZH. ACP-DL: A Deep Learning Long Short-Term Memory Model to Predict Anticancer Peptides Using High-Efficiency Feature Representation. Mol Ther Nucleic Acids 2019;17:1-9. [PMID: 31173946 DOI: 10.1016/j.omtn.2019.04.025] [Cited by in Crossref: 47] [Cited by in F6Publishing: 32] [Article Influence: 15.7] [Reference Citation Analysis]
6 Afridi S, Hoessli DC, Hameed MW. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications. Immunol Rev 2016;272:151-68. [PMID: 27319349 DOI: 10.1111/imr.12435] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
7 Khoshbakht S, Kobarfard F, Beiki D, Sabzevari O, Amini M, Mehrnejad F, Tabib K, Shahhosseini S. HYNIC a bifunctional prosthetic group for the labelling of peptides with 99mTc and 18FDG. J Radioanal Nucl Chem 2016;307:1125-34. [DOI: 10.1007/s10967-015-4259-2] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.4] [Reference Citation Analysis]
8 Feola S, Russo S, Martins B, Lopes A, Vandermeulen G, Fluhler V, De Giorgi C, Fusciello M, Pesonen S, Ylösmäki E, Antignani G, Chiaro J, Hamdan F, Feodoroff M, Grönholm M, Cerullo V. Peptides-Coated Oncolytic Vaccines for Cancer Personalized Medicine. Front Immunol 2022;13:826164. [DOI: 10.3389/fimmu.2022.826164] [Reference Citation Analysis]
9 Dissanayake S, Denny WA, Gamage S, Sarojini V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. Journal of Controlled Release 2017;250:62-76. [DOI: 10.1016/j.jconrel.2017.02.006] [Cited by in Crossref: 139] [Cited by in F6Publishing: 124] [Article Influence: 27.8] [Reference Citation Analysis]
10 AlDeghaither D, Smaglo BG, Weiner LM. Beyond peptides and mAbs--current status and future perspectives for biotherapeutics with novel constructs. J Clin Pharmacol 2015;55 Suppl 3:S4-20. [PMID: 25707963 DOI: 10.1002/jcph.407] [Cited by in Crossref: 40] [Cited by in F6Publishing: 35] [Article Influence: 5.7] [Reference Citation Analysis]
11 Rawal S, Patel M. Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. Nanomicro Lett 2021;13:142. [PMID: 34138386 DOI: 10.1007/s40820-021-00630-6] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Pu X, Ma C, Yin G, You F, Wei Y. Cell adhesion and invasion inhibitory effect of an ovarian cancer targeting peptide selected via phage display in vivo. Biochemical and Biophysical Research Communications 2014;443:858-63. [DOI: 10.1016/j.bbrc.2013.12.058] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
13 Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019;10:787-807. [PMID: 31140150 DOI: 10.1007/s13238-019-0639-7] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 15.0] [Reference Citation Analysis]
14 Soleimani M, Mirmohammad-Sadeghi H, Sadeghi-Aliabadi H, Jahanian-Najafabadi A. Expression and purification of toxic anti-breast cancer p28-NRC chimeric protein. Adv Biomed Res 2016;5:70. [PMID: 27169101 DOI: 10.4103/2277-9175.180639] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
15 Chand V, Kapoor A, Kundu S, Nag A. Identification of a peptide that disrupts hADA3-E6 interaction with implications in HPV induced cancer therapy. Life Sci 2022;288:120157. [PMID: 34801511 DOI: 10.1016/j.lfs.2021.120157] [Reference Citation Analysis]
16 Figueiredo CR, Matsuo AL, Azevedo RA, Massaoka MH, Girola N, Polonelli L, Travassos LR. A novel microtubule de-stabilizing complementarity-determining region C36L1 peptide displays antitumor activity against melanoma in vitro and in vivo. Sci Rep 2015;5:14310. [PMID: 26391685 DOI: 10.1038/srep14310] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 1.7] [Reference Citation Analysis]
17 Sun F, Chen L, Ding X, Xu L, Zhou X, Wei P, Liang JF, Luo SZ. High-Resolution Insights into the Stepwise Self-Assembly of Nanofiber from Bioactive Peptides. J Phys Chem B 2017;121:7421-30. [PMID: 28719744 DOI: 10.1021/acs.jpcb.7b03626] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
18 Tripodi AAP, Ranđelović I, Biri-Kovács B, Szeder B, Mező G, Tóvári J. In Vivo Tumor Growth Inhibition and Antiangiogenic Effect of Cyclic NGR Peptide-Daunorubicin Conjugates Developed for Targeted Drug Delivery. Pathol Oncol Res 2020;26:1879-92. [PMID: 31820302 DOI: 10.1007/s12253-019-00773-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Iwanov I, Rossi A, Montesi M, Doytchinova I, Sargsyan A, Momekov G, Panseri S, Naydenova E. Peptide-based targeted cancer therapeutics: design, synthesis and biological evaluation. Eur J Pharm Sci 2022;:106249. [PMID: 35779821 DOI: 10.1016/j.ejps.2022.106249] [Reference Citation Analysis]
20 Valiyari S, Salimi M, Bouzari S. Novel fusion protein NGR-sIL-24 for targetedly suppressing cancer cell growth via apoptosis. Cell Biol Toxicol 2020;36:179-93. [PMID: 32239369 DOI: 10.1007/s10565-020-09519-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
21 Esmati N, Maddirala AR, Hussein N, Amawi H, Tiwari AK, Andreana PR. Efficient syntheses and anti-cancer activity of xenortides A-D including ent/epi-stereoisomers. Org Biomol Chem 2018;16:5332-42. [PMID: 29999086 DOI: 10.1039/c8ob00452h] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
22 Comert F, Heinrich F, Chowdhury A, Schoeneck M, Darling C, Anderson KW, Libardo MDJ, Angeles-Boza AM, Silin V, Cotten ML, Mihailescu M. Copper-binding anticancer peptides from the piscidin family: an expanded mechanism that encompasses physical and chemical bilayer disruption. Sci Rep 2021;11:12620. [PMID: 34135370 DOI: 10.1038/s41598-021-91670-w] [Reference Citation Analysis]
23 Ebrahimi Samani S, Seraj Z, Naderimanesh H, Khajeh K, Esmaeili Rastaghi AR, Droudi T, Kolivand P, Kazemi H, Asghari SM. Controlled release of an endostatin peptide using chitosan nanoparticles. Chem Biol Drug Des 2017;90:417-24. [PMID: 28165672 DOI: 10.1111/cbdd.12959] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
24 Felício MR, Silva ON, Gonçalves S, Santos NC, Franco OL. Peptides with Dual Antimicrobial and Anticancer Activities. Front Chem 2017;5:5. [PMID: 28271058 DOI: 10.3389/fchem.2017.00005] [Cited by in Crossref: 158] [Cited by in F6Publishing: 148] [Article Influence: 31.6] [Reference Citation Analysis]
25 Câmara GA, Nishiyama-Jr MY, Kitano ES, Oliveira UC, da Silva PI Jr, Junqueira-de-Azevedo IL, Tashima AK. A Multiomics Approach Unravels New Toxins With Possible In Silico Antimicrobial, Antiviral, and Antitumoral Activities in the Venom of Acanthoscurria rondoniae. Front Pharmacol 2020;11:1075. [PMID: 32774304 DOI: 10.3389/fphar.2020.01075] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 Robles-Fort A, García-Robles I, Fernando W, Hoskin DW, Rausell C, Real MD. Dual Antimicrobial and Antiproliferative Activity of TcPaSK Peptide Derived from a Tribolium castaneum Insect Defensin. Microorganisms 2021;9:222. [PMID: 33499187 DOI: 10.3390/microorganisms9020222] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 2022;:1-40. [PMID: 35699384 DOI: 10.1080/02648725.2022.2082157] [Reference Citation Analysis]
28 Kaushik AC, Mehmood A, Peng S, Zhang YJ, Dai X, Wei DQ. A-CaMP: a tool for anti-cancer and antimicrobial peptide generation. J Biomol Struct Dyn 2021;39:285-93. [PMID: 31870207 DOI: 10.1080/07391102.2019.1708796] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Shoombuatong W, Schaduangrat N, Nantasenamat C. Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI J 2018;17:734-52. [PMID: 30190664 DOI: 10.17179/excli2018-1447] [Cited by in F6Publishing: 27] [Reference Citation Analysis]
30 Kumari A, Ameri S, Marraiki N, Elgorban AM, Aroulmoji V, Ponnuchamy K, Govarthanan M, Selvankumar T. Isolation, Characterization and In-Silico Study of Conotoxin Protein from Conus loroisii and Its Anti-cancer Activity. Int J Pept Res Ther 2021;27:385-95. [DOI: 10.1007/s10989-020-10091-x] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Jafary F, Ganjalikhany MR, Moradi A, Hemati M, Jafari S. Novel Peptide Inhibitors for Lactate Dehydrogenase A (LDHA): A Survey to Inhibit LDHA Activity via Disruption of Protein-Protein Interaction. Sci Rep 2019;9:4686. [PMID: 30886157 DOI: 10.1038/s41598-019-38854-7] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
32 Mishra A, Gauri SS, Mukhopadhyay SK, Chatterjee S, Das SS, Mandal SM, Dey S. Identification and structural characterization of a new pro-apoptotic cyclic octapeptide cyclosaplin from somatic seedlings of Santalum album L. Peptides 2014;54:148-58. [DOI: 10.1016/j.peptides.2014.01.023] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
33 Sadeghi F, Kajbaf M, Shafiee F. BR2, a Buforin Derived Cancer Specific Cell Penetrating Peptide for Targeted Delivering of Toxic Agents: a Review Article. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10384-3] [Reference Citation Analysis]
34 Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017;24:21. [PMID: 28320393 DOI: 10.1186/s12929-017-0328-x] [Cited by in Crossref: 163] [Cited by in F6Publishing: 156] [Article Influence: 32.6] [Reference Citation Analysis]
35 Huclier-Markai S, Alliot C, Kerdjoudj R, Mougin-Degraef M, Chouin N, Haddad F. Promising Scandium Radionuclides for Nuclear Medicine: A Review on the Production and Chemistry up to In Vivo Proofs of Concept. Cancer Biother Radiopharm 2018;33:316-29. [PMID: 30265573 DOI: 10.1089/cbr.2018.2485] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 4.8] [Reference Citation Analysis]
36 Gupta P, Mahajan A. Shades of chemical beauty: An overview of synthetic routes to some anticancer drugs. Synthetic Communications 2017;47:1415-33. [DOI: 10.1080/00397911.2017.1324627] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
37 Khalid U, Vi C, Henri J, Macdonald J, Eu P, Mandarano G, Shigdar S. Radiolabelled Aptamers for Theranostic Treatment of Cancer. Pharmaceuticals (Basel) 2018;12:E2. [PMID: 30586898 DOI: 10.3390/ph12010002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
38 Pedron CN, Silva AF, Torres MT, Oliveira CS, Andrade GP, Cerchiaro G, Pinhal MAS, de la Fuente-Nunez C, Oliveira Junior VX. Net charge tuning modulates the antiplasmodial and anticancer properties of peptides derived from scorpion venom. J Pept Sci 2021;27:e3296. [PMID: 33442881 DOI: 10.1002/psc.3296] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Silveira-dorta G, Martín VS, Padrón JM. Synthesis and antiproliferative activity of glutamic acid-based dipeptides. Amino Acids 2015;47:1527-32. [DOI: 10.1007/s00726-015-1987-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
40 Herrera-león C, Ramos-martín F, El Btaouri H, Antonietti V, Sonnet P, Martiny L, Zevolini F, Falciani C, Sarazin C, D’amelio N. The Influence of Short Motifs on the Anticancer Activity of HB43 Peptide. Pharmaceutics 2022;14:1089. [DOI: 10.3390/pharmaceutics14051089] [Reference Citation Analysis]
41 Sahin D, Taflan SO, Yartas G, Ashktorab H, Smoot DT. Screening and Identification of Peptides Specifically Targeted to Gastric Cancer Cells from a Phage Display Peptide Library. Asian Pac J Cancer Prev 2018;19:927-32. [PMID: 29693344 DOI: 10.22034/APJCP.2018.19.4.927] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
42 Liu SY, Ge D, Chen LN, Zhao J, Su L, Zhang SL, Miao JY, Zhao BX. A small molecule induces integrin β4 nuclear translocation and apoptosis selectively in cancer cells with high expression of integrin β4. Oncotarget 2016;7:16282-96. [PMID: 26918348 DOI: 10.18632/oncotarget.7646] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 3.4] [Reference Citation Analysis]
43 Vehlow A, Storch K, Matzke D, Cordes N. Molecular Targeting of Integrins and Integrin-Associated Signaling Networks in Radiation Oncology. Recent Results Cancer Res 2016;198:89-106. [PMID: 27318682 DOI: 10.1007/978-3-662-49651-0_4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
44 Chen X, Fan S, Song E. The Dawning of Translational Breast Cancer: From Bench to Bedside. Adv Exp Med Biol 2017;1026:1-25. [PMID: 29282677 DOI: 10.1007/978-981-10-6020-5_1] [Reference Citation Analysis]
45 Blanco-Míguez A, Gutiérrez-Jácome A, Pérez-Pérez M, Pérez-Rodríguez G, Catalán-García S, Fdez-Riverola F, Lourenço A, Sánchez B. From amino acid sequence to bioactivity: The biomedical potential of antitumor peptides. Protein Sci 2016;25:1084-95. [PMID: 27010507 DOI: 10.1002/pro.2927] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
46 Almalki S, Beigh S, Akhter N, Alharbi RA. In silico epitope-based vaccine design against influenza A neuraminidase protein: computational analysis established on B- and T-cell epitope predictions. Saudi Journal of Biological Sciences 2022. [DOI: 10.1016/j.sjbs.2022.103283] [Reference Citation Analysis]
47 Behera B, Mukherjee D, Agarwal T, Das J, Ghosh SK, Maiti TK. Cell penetrating peptides from agglutinin protein of Abrus precatorius facilitate the uptake of Imatinib mesylate. Colloids and Surfaces B: Biointerfaces 2016;140:169-75. [DOI: 10.1016/j.colsurfb.2015.12.042] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
48 Banerji B, Chatterjee M, Prodhan C, Chaudhuri K. Tripeptide consisting of benzyl protected di-cysteine and phenylalanine forms spherical assembly and induces cytotoxicity in cancer cells via apoptosis. RSC Adv 2016;6:112667-76. [DOI: 10.1039/c6ra23911k] [Cited by in Crossref: 3] [Article Influence: 0.5] [Reference Citation Analysis]
49 Erfani S, Moghimi A, Aboutaleb N, Khaksari M. Protective effects of Nesfatin-1 peptide on cerebral ischemia reperfusion injury via inhibition of neuronal cell death and enhancement of antioxidant defenses. Metab Brain Dis 2019;34:79-85. [DOI: 10.1007/s11011-018-0323-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
50 Baindara P, Gautam A, Raghava GPS, Korpole S. Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci Rep 2017;7:46541. [PMID: 28422156 DOI: 10.1038/srep46541] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 6.8] [Reference Citation Analysis]
51 Ianni F, Carotti A, Marinozzi M, Marcelli G, Di Michele A, Sardella R, Lindner W, Natalini B. Diastereo- and enantioseparation of a Nα-Boc amino acid with a zwitterionic quinine-based stationary phase: Focus on the stereorecognition mechanism. Analytica Chimica Acta 2015;885:174-82. [DOI: 10.1016/j.aca.2015.06.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
52 Taghizadeh MS, Retzl B, Muratspahić E, Trenk C, Casanova E, Moghadam A, Afsharifar A, Niazi A, Gruber CW. Discovery of the cyclotide caripe 11 as a ligand of the cholecystokinin-2 receptor. Sci Rep 2022;12:9215. [PMID: 35654807 DOI: 10.1038/s41598-022-13142-z] [Reference Citation Analysis]
53 Qiao X, Yang H, Gao J, Cai S, Shi N, Wang M, Wang Y, Yu H. A small cytotoxic peptide from frog elicits potent antitumor immunity to prevent local tumor growth and metastases. Future Medicinal Chemistry 2019;11:2505-25. [DOI: 10.4155/fmc-2019-0100] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
54 Chen W, Ding H, Feng P, Lin H, Chou KC. iACP: a sequence-based tool for identifying anticancer peptides. Oncotarget 2016;7:16895-909. [PMID: 26942877 DOI: 10.18632/oncotarget.7815] [Cited by in Crossref: 216] [Cited by in F6Publishing: 208] [Article Influence: 43.2] [Reference Citation Analysis]
55 Deigin VI, Poluektova EA, Beniashvili AG, Kozin SA, Poluektov YM. Development of Peptide Biopharmaceuticals in Russia. Pharmaceutics 2022;14:716. [DOI: 10.3390/pharmaceutics14040716] [Reference Citation Analysis]
56 Mahajan S, Patharkar A, Kuche K, Maheshwari R, Deb PK, Kalia K, Tekade RK. Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int J Pharm 2018;548:540-58. [PMID: 29997043 DOI: 10.1016/j.ijpharm.2018.07.027] [Cited by in Crossref: 68] [Cited by in F6Publishing: 52] [Article Influence: 17.0] [Reference Citation Analysis]
57 Savoie JD, Otis F, Bürck J, Ulrich AS, Voyer N. Crown ether helical peptides are preferentially inserted in lipid bilayers as a transmembrane ion channels. Biopolymers 2015;104:427-33. [PMID: 25753314 DOI: 10.1002/bip.22633] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
58 Herrera-León C, Ramos-Martín F, Antonietti V, Sonnet P, D'Amelio N. The impact of phosphatidylserine exposure on cancer cell membranes on the activity of the anticancer peptide HB43. FEBS J 2021. [PMID: 34767285 DOI: 10.1111/febs.16276] [Reference Citation Analysis]
59 Diwan D, Cheng L, Usmani Z, Sharma M, Holden N, Willoughby N, Sangwan N, Baadhe RR, Liu C, Gupta VK. Microbial cancer therapeutics: A promising approach. Semin Cancer Biol 2021:S1044-579X(21)00131-0. [PMID: 33979677 DOI: 10.1016/j.semcancer.2021.05.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
60 Dash BS, Jose G, Lu YJ, Chen JP. Functionalized Reduced Graphene Oxide as a Versatile Tool for Cancer Therapy. Int J Mol Sci 2021;22:2989. [PMID: 33804239 DOI: 10.3390/ijms22062989] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
61 Mulder KC, Lima LA, Miranda VJ, Dias SC, Franco OL. Current scenario of peptide-based drugs: the key roles of cationic antitumor and antiviral peptides. Front Microbiol 2013;4:321. [PMID: 24198814 DOI: 10.3389/fmicb.2013.00321] [Cited by in Crossref: 94] [Cited by in F6Publishing: 97] [Article Influence: 10.4] [Reference Citation Analysis]
62 Wang H, Yin Y, Wang P, Xiong C, Huang L, Li S, Li X, Fu L. Current situation and future usage of anticancer drug databases. Apoptosis 2016;21:778-94. [PMID: 27193464 DOI: 10.1007/s10495-016-1250-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
63 Szweda R, Trzebicka B, Dworak A, Otulakowski L, Kosowski D, Hertlein J, Haladjova E, Rangelov S, Szweda D. Smart Polymeric Nanocarriers of Met-enkephalin. Biomacromolecules 2016;17:2691-700. [DOI: 10.1021/acs.biomac.6b00725] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
64 Li L, Kuo HT, Wang X, Merkens H, Colpo N, Radchenko V, Schaffer P, Lin KS, Bénard F, Orvig C. tBu4octapa-alkyl-NHS for metalloradiopeptide preparation. Dalton Trans 2020;49:7605-19. [PMID: 32459231 DOI: 10.1039/d0dt00845a] [Reference Citation Analysis]
65 Peng T, Wang X, Li Z, Bi L, Gao J, Yang M, Wang Y, Yao X, Shan H, Jin H. Preclinical Evaluation of [64Cu]NOTA-CP01 as a PET Imaging Agent for Metastatic Esophageal Squamous Cell Carcinoma. Mol Pharm 2021;18:3638-48. [PMID: 34424706 DOI: 10.1021/acs.molpharmaceut.1c00600] [Reference Citation Analysis]
66 Bajpai VK, Shukla S, Kang SM, Hwang SK, Song X, Huh YS, Han YK. Developments of Cyanobacteria for Nano-Marine Drugs: Relevance of Nanoformulations in Cancer Therapies. Mar Drugs 2018;16:E179. [PMID: 29882898 DOI: 10.3390/md16060179] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
67 Vijayakumar S, Ptv L. ACPP: A Web Server for Prediction and Design of Anti-cancer Peptides. Int J Pept Res Ther 2015;21:99-106. [DOI: 10.1007/s10989-014-9435-7] [Cited by in Crossref: 37] [Cited by in F6Publishing: 18] [Article Influence: 4.6] [Reference Citation Analysis]
68 Agarwal S, Sau S, Iyer AK, Dixit A, Kashaw SK. Multiple strategies for the treatment of invasive breast carcinoma: A comprehensive prospective. Drug Discov Today 2021:S1359-6446(21)00446-3. [PMID: 34715356 DOI: 10.1016/j.drudis.2021.10.008] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Afridi S, Shaheen F, Roetzschke O, Shah ZA, Abbas SC, Siraj R, Makhmoor T. A cyclic peptide accelerates the loading of peptide antigens in major histocompatibility complex class II molecules. Biochemical and Biophysical Research Communications 2015;456:774-9. [DOI: 10.1016/j.bbrc.2014.12.047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
70 Aziz AZB, Hasan MAM, Ahmad S, Mamun MA, Shin J, Hossain MR. Multi-channel CNN based anticancer peptides identification. Anal Biochem 2022;:114707. [PMID: 35568159 DOI: 10.1016/j.ab.2022.114707] [Reference Citation Analysis]
71 Vries Rd, Andrade CA, Bakuzis AF, Mandal SM, Franco OL. Next-generation nanoantibacterial tools developed from peptides. Nanomedicine (Lond) 2015;10:1643-61. [PMID: 26008197 DOI: 10.2217/nnm.15.9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
72 Paulus C, Zapp J, Luzhetskyy A. New Scabimycins A-C Isolated from Streptomyces acidiscabies (Lu19992). Molecules 2021;26:5922. [PMID: 34641466 DOI: 10.3390/molecules26195922] [Reference Citation Analysis]
73 Bosseboeuf A, Baron A, Duval E, Gautier A, Sourdaine P, Auvray P. K092A and K092B, Two Peptides Isolated from the Dogfish (Scyliorhinus canicula L.), with Potential Antineoplastic Activity Against Human Prostate and Breast Cancer Cells. Mar Drugs. 2019;17. [PMID: 31795172 DOI: 10.3390/md17120672] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
74 Siahmansouri H, Somi MH, Babaloo Z, Baradaran B, Jadidi-niaragh F, Atyabi F, Mohammadi H, Ahmadi M, Yousefi M. Effects of HMGA2 siRNA and doxorubicin dual delivery by chitosan nanoparticles on cytotoxicity and gene expression of HT-29 colorectal cancer cell line. Journal of Pharmacy and Pharmacology 2016;68:1119-30. [DOI: 10.1111/jphp.12593] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 7.2] [Reference Citation Analysis]
75 Gabernet G, Müller AT, Hiss JA, Schneider G. Membranolytic anticancer peptides. Med Chem Commun 2016;7:2232-45. [DOI: 10.1039/c6md00376a] [Cited by in Crossref: 40] [Article Influence: 6.7] [Reference Citation Analysis]
76 Taha AA, Al-jawad SMH, Al-barram LFA. Improvement of Cancer Therapy by TAT Peptide Conjugated Gold Nanoparticles. J Clust Sci 2019;30:403-14. [DOI: 10.1007/s10876-019-01497-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
77 Camacho EM, Mesa-Pereira B, Medina C, Flores A, Santero E. Engineering Salmonella as intracellular factory for effective killing of tumour cells. Sci Rep 2016;6:30591. [PMID: 27464652 DOI: 10.1038/srep30591] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
78 Groß A, Hashimoto C, Sticht H, Eichler J. Synthetic Peptides as Protein Mimics. Front Bioeng Biotechnol 2015;3:211. [PMID: 26835447 DOI: 10.3389/fbioe.2015.00211] [Cited by in Crossref: 55] [Cited by in F6Publishing: 47] [Article Influence: 9.2] [Reference Citation Analysis]
79 McNiff ML, Chadwick JS. Metal-bound claMP Tag inhibits proteolytic cleavage. Protein Eng Des Sel 2017;30:467-75. [PMID: 28541524 DOI: 10.1093/protein/gzx030] [Reference Citation Analysis]
80 Wang JP, Hielscher A. Fibronectin: How Its Aberrant Expression in Tumors May Improve Therapeutic Targeting. J Cancer 2017;8:674-82. [PMID: 28367247 DOI: 10.7150/jca.16901] [Cited by in Crossref: 82] [Cited by in F6Publishing: 76] [Article Influence: 16.4] [Reference Citation Analysis]
81 Mughees M, Kumar K, Wajid S. Exosome vesicle as a nano-therapeutic carrier for breast cancer. J Drug Target 2021;29:121-30. [PMID: 32787592 DOI: 10.1080/1061186X.2020.1808001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
82 Araste F, Abnous K, Hashemi M, Taghdisi SM, Ramezani M, Alibolandi M. Peptide-based targeted therapeutics: Focus on cancer treatment. Journal of Controlled Release 2018;292:141-62. [DOI: 10.1016/j.jconrel.2018.11.004] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 14.3] [Reference Citation Analysis]
83 Sengupta P, Banerjee N, Roychowdhury T, Dutta A, Chattopadhyay S, Chatterjee S. Site-specific amino acid substitution in dodecameric peptides determines the stability and unfolding of c-MYC quadruplex promoting apoptosis in cancer cells. Nucleic Acids Res 2018;46:9932-50. [PMID: 30239898 DOI: 10.1093/nar/gky824] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
84 Soudy R, Etayash H, Bahadorani K, Lavasanifar A, Kaur K. Breast Cancer Targeting Peptide Binds Keratin 1: A New Molecular Marker for Targeted Drug Delivery to Breast Cancer. Mol Pharm 2017;14:593-604. [PMID: 28157321 DOI: 10.1021/acs.molpharmaceut.6b00652] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 5.4] [Reference Citation Analysis]
85 Rodríguez-Ulloa A, Gil J, Ramos Y, Hernández-Álvarez L, Flores L, Oliva B, García D, Sánchez-Puente A, Musacchio-Lasa A, Fernández-de-Cossio J, Padrón G, González López LJ, Besada V, Guerra-Vallespí M. Proteomic Study to Survey the CIGB-552 Antitumor Effect. Biomed Res Int 2015;2015:124082. [PMID: 26576414 DOI: 10.1155/2015/124082] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
86 Jaber S, Iliev I, Angelova T, Nemska V, Sulikovska I, Naydenova E, Georgieva N, Givechev I, Grabchev I, Danalev D. Synthesis, Antitumor and Antibacterial Studies of New Shortened Analogues of (KLAKLAK)2-NH2 and Their Conjugates Containing Unnatural Amino Acids. Molecules 2021;26:898. [PMID: 33567789 DOI: 10.3390/molecules26040898] [Reference Citation Analysis]
87 Zafar S, Beg S, Panda SK, Rahman M, Alharbi KS, Jain GK, Ahmad FJ. Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Semin Cancer Biol 2021;69:249-67. [PMID: 31442570 DOI: 10.1016/j.semcancer.2019.08.023] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
88 Liu F, Ma F, Wang Y, Hao L, Zeng H, Jia C, Wang Y, Liu P, Ong IM, Li B, Chen G, Jiang J, Gong S, Li L, Xu W. PKM2 methylation by CARM1 activates aerobic glycolysis to promote tumorigenesis. Nat Cell Biol 2017;19:1358-70. [PMID: 29058718 DOI: 10.1038/ncb3630] [Cited by in Crossref: 97] [Cited by in F6Publishing: 103] [Article Influence: 19.4] [Reference Citation Analysis]
89 Lee DY, Kim EH. Therapeutic Effects of Amino Acids in Liver Diseases: Current Studies and Future Perspectives. J Cancer Prev 2019;24:72-8. [PMID: 31360687 DOI: 10.15430/JCP.2019.24.2.72] [Cited by in Crossref: 21] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
90 Ettayapuram Ramaprasad AS, Singh S, Gajendra P S R, Venkatesan S. AntiAngioPred: A Server for Prediction of Anti-Angiogenic Peptides. PLoS One 2015;10:e0136990. [PMID: 26335203 DOI: 10.1371/journal.pone.0136990] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
91 Nisticò P, Di Modugno F, Spada S, Bissell MJ. β1 and β4 integrins: from breast development to clinical practice. Breast Cancer Res 2014;16:459. [PMID: 25606594 DOI: 10.1186/s13058-014-0459-x] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 5.3] [Reference Citation Analysis]
92 Tyson JA, Calatayud DG, Mirabello V, Mao B, Pascu SI. Labeling of Graphene, Graphene Oxides, and of Their Congeners. Insights from Imaging in Bioinorganic Chemistry. Elsevier; 2016. pp. 397-440. [DOI: 10.1016/bs.adioch.2015.09.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
93 Akrami M, Balalaie S, Hosseinkhani S, Alipour M, Salehi F, Bahador A, Haririan I. Tuning the anticancer activity of a novel pro-apoptotic peptide using gold nanoparticle platforms. Sci Rep 2016;6:31030. [PMID: 27491007 DOI: 10.1038/srep31030] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 7.3] [Reference Citation Analysis]
94 Savioli M, Antonelli L, Bocchinfuso G, Cavalieri F, Cimino R, Gatto E, Placidi E, Fernandez Masso JR, Garay Perez H, Santana H, Guerra-Vallespi M, Venanzi M. Formulation matters! A spectroscopic and molecular dynamics investigation on the peptide CIGB552 as itself and in its therapeutical formulation. J Pept Sci 2021;:e3356. [PMID: 34114297 DOI: 10.1002/psc.3356] [Reference Citation Analysis]
95 Gupta B, Yong CS, Kim JO. Solid matrix-based lipid nanoplatforms as carriers for combinational therapeutics in cancer. Journal of Pharmaceutical Investigation 2017;47:461-73. [DOI: 10.1007/s40005-017-0337-5] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 5.4] [Reference Citation Analysis]
96 [DOI: 10.1101/518340] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
97 Figueiredo CR, Matsuo AL, Massaoka MH, Polonelli L, Travassos LR. Anti-tumor activities of peptides corresponding to conserved complementary determining regions from different immunoglobulins. Peptides 2014;59:14-9. [DOI: 10.1016/j.peptides.2014.06.007] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.6] [Reference Citation Analysis]
98 Pérez-López A, Martín-Sabroso C, Torres-Suárez AI, Aparicio-Blanco J. Timeline of Translational Formulation Technologies for Cancer Therapy: Successes, Failures, and Lessons Learned Therefrom. Pharmaceutics 2020;12:E1028. [PMID: 33126622 DOI: 10.3390/pharmaceutics12111028] [Reference Citation Analysis]
99 Gala UH, Miller DA, Williams RO 3rd. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochim Biophys Acta Rev Cancer 2020;1873:188319. [PMID: 31678141 DOI: 10.1016/j.bbcan.2019.188319] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
100 Skjånes K, Aesoy R, Herfindal L, Skomedal H. Bioactive peptides from microalgae: Focus on anti-cancer and immunomodulating activity. Physiol Plant 2021. [PMID: 34085279 DOI: 10.1111/ppl.13472] [Reference Citation Analysis]
101 Golmohammadi F, Balalaie S, Hamdan F, Maghari S. Efficient synthesis of novel conjugated 1,3,4-oxadiazole–peptides. New J Chem 2018;42:4344-51. [DOI: 10.1039/c7nj04720g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
102 Hoppenz P, Els-Heindl S, Beck-Sickinger AG. Peptide-Drug Conjugates and Their Targets in Advanced Cancer Therapies. Front Chem 2020;8:571. [PMID: 32733853 DOI: 10.3389/fchem.2020.00571] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 11.0] [Reference Citation Analysis]
103 Gaowa A, Horibe T, Kohno M, Harada H, Hiraoka M, Kawakami K. Potent anti-tumor effects of EGFR-targeted hybrid peptide on mice bearing liver metastases. Clin Exp Metastasis 2016;33:87-95. [DOI: 10.1007/s10585-015-9760-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
104 Admassu H, Gasmalla MAA, Yang R, Zhao W. Bioactive Peptides Derived from Seaweed Protein and Their Health Benefits: Antihypertensive, Antioxidant, and Antidiabetic Properties. J Food Sci 2018;83:6-16. [PMID: 29227526 DOI: 10.1111/1750-3841.14011] [Cited by in Crossref: 72] [Cited by in F6Publishing: 51] [Article Influence: 14.4] [Reference Citation Analysis]
105 Chen K, Shou L, Lin F, Duan W, Wu M, Xie X, Xie Y, Li W, Tao M. Artesunate induces G2/M cell cycle arrest through autophagy induction in breast cancer cells. Anti-Cancer Drugs 2014;25:652-62. [DOI: 10.1097/cad.0000000000000089] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
106 Ray T, Kar D, Pal A, Mukherjee S, Das C, Pal A. Molecular targeting of breast and colon cancer cells by PAR1 mediated apoptosis through a novel pro-apoptotic peptide. Apoptosis 2018;23:679-94. [DOI: 10.1007/s10495-018-1485-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
107 Ye JC, Hsu LS, Tsai JH, Yang HL, Hsiao MW, Hwang JM, Lee CJ, Liu JY. MZF-1/Elk-1/PKCα is Associated with Poor Prognosis in Patients with Hepatocellular Carcinoma. J Cancer 2017;8:3028-36. [PMID: 28928894 DOI: 10.7150/jca.20467] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
108 Parvege MM, Rahman M, Nibir YM, Hossain MS. Two highly similar LAEDDTNAQKT and LTDKIGTEI epitopes in G glycoprotein may be useful for effective epitope based vaccine design against pathogenic Henipavirus. Comput Biol Chem 2016;61:270-80. [PMID: 26970211 DOI: 10.1016/j.compbiolchem.2016.03.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
109 Wang B, Feng D, Han L, Fan J, Zhang X, Wang X, Ye L, Shi X, Feng M. Combination of apolipoprotein A1-modi liposome-doxorubicin with autophagy inhibitors overcame drug resistance in vitro. J Pharm Sci 2014;103:3994-4004. [PMID: 25354472 DOI: 10.1002/jps.24216] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
110 De G, Ko JK, Tan T, Zhu H, Li H, Ma J. Amphipathic tail-anchoring peptide is a promising therapeutic agent for prostate cancer treatment. Oncotarget 2014;5:7734-47. [PMID: 25245280 DOI: 10.18632/oncotarget.2301] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
111 Chionis K, Krikorian D, Koukkou A, Sakarellos-daitsiotis M, Panou-pomonis E. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin: New Analogs of the Native Antimicrobial Peptide Anoplin. J Pept Sci 2016;22:731-6. [DOI: 10.1002/psc.2939] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
112 Kuo Y, Rajesh R. Functionalized drug-gene delivery materials to transport inhibitor of apoptosis protein antagonists for tumor malignancy management. Journal of the Taiwan Institute of Chemical Engineers 2022;133:104283. [DOI: 10.1016/j.jtice.2022.104283] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
113 Wolin EM, Manon A, Chassaing C, Lewis A, Bertocchi L, Richard J, Phan AT. Lanreotide Depot: An Antineoplastic Treatment of Carcinoid or Neuroendocrine Tumors. J Gastrointest Cancer 2016;47:366-74. [PMID: 27619395 DOI: 10.1007/s12029-016-9866-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
114 Tyagi A, Kapoor P, Kumar R, Chaudhary K, Gautam A, Raghava GP. In silico models for designing and discovering novel anticancer peptides. Sci Rep 2013;3:2984. [PMID: 24136089 DOI: 10.1038/srep02984] [Cited by in Crossref: 121] [Cited by in F6Publishing: 98] [Article Influence: 13.4] [Reference Citation Analysis]
115 Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP; Open Source Drug Discovery Consortium. In silico approach for predicting toxicity of peptides and proteins. PLoS One 2013;8:e73957. [PMID: 24058508 DOI: 10.1371/journal.pone.0073957] [Cited by in Crossref: 407] [Cited by in F6Publishing: 347] [Article Influence: 45.2] [Reference Citation Analysis]
116 Bicak B, Kecel Gunduz S, Budama Kilinc Y, Imhof P, Gok B, Akman G, Ozel AE. Structural, spectroscopic, in silico, in vitro and DNA binding evaluations of tyrosyl-lysyl-threonine. J Biomol Struct Dyn 2021;:1-17. [PMID: 34463215 DOI: 10.1080/07391102.2021.1968499] [Reference Citation Analysis]
117 Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS. Peptide Toxicity Prediction. In: Zhou P, Huang J, editors. Computational Peptidology. New York: Springer; 2015. pp. 143-57. [DOI: 10.1007/978-1-4939-2285-7_7] [Cited by in Crossref: 28] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
118 Mangini M, Iaccino E, Mosca MG, Mimmi S, D'Angelo R, Quinto I, Scala G, Mariggiò S. Peptide-guided targeting of GPR55 for anti-cancer therapy. Oncotarget 2017;8:5179-95. [PMID: 28029647 DOI: 10.18632/oncotarget.14121] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
119 Ibrahim HM, Mohamed AH, Salem ML, Osman GY, Morsi DS. Anti-neoplastic and immunomodulatory potency of co-treatment based on bovine lactoferrin and/or muramyl dipeptide in tumor-bearing mice. Toxicol Res (Camb) 2020;9:137-47. [PMID: 32440345 DOI: 10.1093/toxres/tfaa012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
120 Agrawal P, Bhagat D, Mahalwal M, Sharma N, Raghava GPS. AntiCP 2.0: an updated model for predicting anticancer peptides. Brief Bioinform 2021;22:bbaa153. [PMID: 32770192 DOI: 10.1093/bib/bbaa153] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
121 Wetzler M, Hamilton P. Peptides as therapeutics. Peptide Applications in Biomedicine, Biotechnology and Bioengineering. Elsevier; 2018. pp. 215-30. [DOI: 10.1016/b978-0-08-100736-5.00008-9] [Cited by in Crossref: 6] [Article Influence: 1.5] [Reference Citation Analysis]
122 Halan V, Maity S, Bhambure R, Rathore AS. Multimodal Chromatography for Purification of Biotherapeutics – A Review. CPPS 2018;20:4-13. [DOI: 10.2174/1389203718666171020103559] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
123 Parchebafi A, Tamanaee F, Ehteram H, Ahmad E, Nikzad H, Haddad Kashani H. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Microb Cell Fact 2022;21:118. [PMID: 35717207 DOI: 10.1186/s12934-022-01848-8] [Reference Citation Analysis]
124 Fisher E, Pavlenko K, Vlasov A, Ramenskaya G. Peptide-Based Therapeutics for Oncology. Pharmaceut Med 2019;33:9-20. [PMID: 31933267 DOI: 10.1007/s40290-018-0261-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
125 Okasha H, Samir S, Nasr SM. Purified recombinant human Chromogranin A N46 peptide with remarkable anticancer effect on human colon cancer cells. Bioorg Chem 2021;115:105266. [PMID: 34449322 DOI: 10.1016/j.bioorg.2021.105266] [Reference Citation Analysis]
126 Khurshid Y, Syed B, Simjee SU, Beg O, Ahmed A. Antiproliferative and apoptotic effects of proteins from black seeds (Nigella sativa) on human breast MCF-7 cancer cell line. BMC Complement Med Ther 2020;20:5. [PMID: 32020890 DOI: 10.1186/s12906-019-2804-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
127 Hicks RP. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted Cα amino acids. Bioorganic & Medicinal Chemistry 2016;24:4056-65. [DOI: 10.1016/j.bmc.2016.06.048] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
128 Gehrmann M, Stangl S, Foulds GA, Oellinger R, Breuninger S, Rad R, Pockley AG, Multhoff G. Tumor imaging and targeting potential of an Hsp70-derived 14-mer peptide. PLoS One 2014;9:e105344. [PMID: 25165986 DOI: 10.1371/journal.pone.0105344] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.3] [Reference Citation Analysis]
129 Cho CF, Yu L, Nsiama TK, Kadam AN, Raturi A, Shukla S, Amadei GA, Steinmetz NF, Luyt LG, Lewis JD. Viral nanoparticles decorated with novel EGFL7 ligands enable intravital imaging of tumor neovasculature. Nanoscale 2017;9:12096-109. [PMID: 28799610 DOI: 10.1039/c7nr02558k] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.8] [Reference Citation Analysis]
130 Sung H, Jane W, Kao W, Fu P, Ho S, Yang C. Lipopolysaccharide-Binding Motif Derived Peptides Induce Cell Membrane Damages in Human Lung Cancer and Hepatoma Cell Lines. Int J Pept Res Ther 2015;21:313-24. [DOI: 10.1007/s10989-015-9459-7] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
131 Kaushik AC, Li M, Mehmood A, Dai X, Wei DQ. ACPS: An accurate bioinformatics tool for precision-based anti-cancer peptide generation via omics data. Chem Biol Drug Des 2021;97:372-82. [PMID: 32916036 DOI: 10.1111/cbdd.13789] [Reference Citation Analysis]
132 Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol Oncol 2017;11:5-27. [PMID: 28085224 DOI: 10.1002/1878-0261.12019] [Cited by in Crossref: 86] [Cited by in F6Publishing: 80] [Article Influence: 14.3] [Reference Citation Analysis]
133 Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol 2021;:174512. [PMID: 34555395 DOI: 10.1016/j.ejphar.2021.174512] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
134 Ma R, Mahadevappa R, Kwok HF. Venom-based peptide therapy: insights into anti-cancer mechanism. Oncotarget 2017;8:100908-30. [PMID: 29246030 DOI: 10.18632/oncotarget.21740] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 8.0] [Reference Citation Analysis]
135 Mosca MG, Mangini M, Cioffi S, Barba P, Mariggiò S. Peptide targeting of lysophosphatidylinositol-sensing GPR55 for osteoclastogenesis tuning. Cell Commun Signal 2021;19:48. [PMID: 33902596 DOI: 10.1186/s12964-021-00727-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
136 Akbar S, Hayat M, Iqbal M, Jan MA. iACP-GAEnsC: Evolutionary genetic algorithm based ensemble classification of anticancer peptides by utilizing hybrid feature space. Artif Intell Med 2017;79:62-70. [PMID: 28655440 DOI: 10.1016/j.artmed.2017.06.008] [Cited by in Crossref: 41] [Cited by in F6Publishing: 37] [Article Influence: 8.2] [Reference Citation Analysis]
137 Karthik R, Manigandan V, Ebenezar KK, Vijayashree R, Saravanan R. In vitro and in vivo anticancer activity of posterior salivary gland toxin from the cuttlefish Sepia pharaonis, Ehrenberg (1831). Chemico-Biological Interactions 2017;272:10-20. [DOI: 10.1016/j.cbi.2017.04.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
138 Safavi A, Kefayat A, Sotoodehnejadnematalahi F, Salehi M, Modarressi MH. In Silico Analysis of Synaptonemal Complex Protein 1 (SYCP1) and Acrosin Binding Protein (ACRBP) Antigens to Design Novel Multiepitope Peptide Cancer Vaccine Against Breast Cancer. Int J Pept Res Ther 2019;25:1343-59. [DOI: 10.1007/s10989-018-9780-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.8] [Reference Citation Analysis]
139 O' Brien RO, Hayes M, Sheldrake G, Tiwari B, Walsh P. Macroalgal Proteins: A Review. Foods 2022;11:571. [DOI: 10.3390/foods11040571] [Reference Citation Analysis]
140 Mohammadi-Farsani A, Habibi-Roudkenar M, Golkar M, Shokrgozar MA, Jahanian-Najafabadi A, KhanAhmad H, Valiyari S, Bouzari S. A-NGR fusion protein induces apoptosis in human cancer cells. EXCLI J 2018;17:590-7. [PMID: 30108463 DOI: 10.17179/excli2018-1120] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
141 Jung HJ, Kim Y, Lee HB, Kwon HJ. Antiangiogenic activity of the lipophilic antimicrobial peptides from an endophytic bacterial strain isolated from red pepper leaf. Mol Cells 2015;38:273-8. [PMID: 25556370 DOI: 10.14348/molcells.2015.2320] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 1.6] [Reference Citation Analysis]
142 Massaoka MH, Matsuo AL, Figueiredo CR, Girola N, Faria CF, Azevedo RA, Travassos LR. A novel cell-penetrating peptide derived from WT1 enhances p53 activity, induces cell senescence and displays antimelanoma activity in xeno- and syngeneic systems. FEBS Open Bio 2014;4:153-61. [PMID: 24490140 DOI: 10.1016/j.fob.2014.01.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.1] [Reference Citation Analysis]
143 Chan ML, Yu CC, Hsu JL, Leu WJ, Chan SH, Hsu LC, Liu SP, Ivantcova PM, Dogan Ö, Bräse S, Kudryavtsev KV, Guh JH. Enantiomerically pure β-dipeptide derivative induces anticancer activity against human hormone-refractory prostate cancer through both PI3K/Akt-dependent and -independent pathways. Oncotarget 2017;8:96668-83. [PMID: 29228561 DOI: 10.18632/oncotarget.18040] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
144 Thangaretnam KP, Gopisetty G, Ramanathan P, Rajkumar T. A polypeptide from the junction region sequence of EWS-FLI1 inhibits Ewing's sarcoma cells, interacts with the EWS-FLI1 and partner proteins. Sci Rep 2017;7:7172. [PMID: 28775288 DOI: 10.1038/s41598-017-07482-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
145 Boopathi V, Subramaniyam S, Malik A, Lee G, Manavalan B, Yang DC. mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides. Int J Mol Sci 2019;20:E1964. [PMID: 31013619 DOI: 10.3390/ijms20081964] [Cited by in Crossref: 70] [Cited by in F6Publishing: 56] [Article Influence: 23.3] [Reference Citation Analysis]
146 Kudryavtsev KV, Yu C, Ivantcova PM, Polshakov VI, Churakov AV, Bräse S, Zefirov NS, Guh J. Structural Studies and Anticancer Activity of a Novel Class of β-Peptides. Chem Asian J 2015;10:383-9. [DOI: 10.1002/asia.201403171] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
147 Karimi S, Fouani MH, Moshaii A, Nikkhah M, Hosseinkhani S, Sheikhnejad R. Development of Dual Functional Nucleic Acid Delivery Nanosystem for DNA Induced Silencing of Bcl-2 Oncogene. Int J Nanomedicine 2020;15:1693-708. [PMID: 32210560 DOI: 10.2147/IJN.S236217] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
148 Calatayud DG, Neophytou S, Nicodemou E, Giuffrida SG, Ge H, Pascu SI. Nano-Theranostics for the Sensing, Imaging and Therapy of Prostate Cancers. Front Chem 2022;10:830133. [DOI: 10.3389/fchem.2022.830133] [Reference Citation Analysis]
149 Anand P, Filipenko P, Huaman J, Lyudmer M, Hossain M, Santamaria C, Huang K, Ogunwobi OO, Holford M. Selective Inhibition of Liver Cancer Cells Using Venom Peptide. Mar Drugs 2019;17:E587. [PMID: 31627357 DOI: 10.3390/md17100587] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
150 Kopeikin PM, Zharkova MS, Kolobov AA, Smirnova MP, Sukhareva MS, Umnyakova ES, Kokryakov VN, Orlov DS, Milman BL, Balandin SV, Panteleev PV, Ovchinnikova TV, Komlev AS, Tossi A, Shamova OV. Caprine Bactenecins as Promising Tools for Developing New Antimicrobial and Antitumor Drugs. Front Cell Infect Microbiol 2020;10:552905. [PMID: 33194795 DOI: 10.3389/fcimb.2020.552905] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
151 Girola N, Resende-Lara PT, Figueiredo CR, Massaoka MH, Azevedo RA, Cunha RLOR, Polonelli L, Travassos LR. Molecular, Biological and Structural Features of VL CDR-1 Rb44 Peptide, Which Targets the Microtubule Network in Melanoma Cells. Front Oncol 2019;9:25. [PMID: 30740361 DOI: 10.3389/fonc.2019.00025] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
152 Deesrisak K, Yingchutrakul Y, Krobthong S, Roytrakul S, Chatupheeraphat C, Subkorn P, Anurathapan U, Tanyong D. Bioactive peptide isolated from sesame seeds inhibits cell proliferation and induces apoptosis and autophagy in leukemic cells. EXCLI J 2021;20:709-21. [PMID: 33907539 DOI: 10.17179/excli2021-3406] [Reference Citation Analysis]
153 Safavi A, Kefayat A, Mahdevar E, Ghahremani F, Nezafat N, Modarressi MH. Efficacy of co-immunization with the DNA and peptide vaccines containing SYCP1 and ACRBP epitopes in a murine triple-negative breast cancer model. Hum Vaccin Immunother 2021;17:22-34. [PMID: 32497486 DOI: 10.1080/21645515.2020.1763693] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
154 Kumar S, Li H. In Silico Design of Anticancer Peptides. Methods Mol Biol 2017;1647:245-54. [PMID: 28809008 DOI: 10.1007/978-1-4939-7201-2_17] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
155 Soleimani M, Mirmohammmad Sadeghi H, Jahanian-Najafabadi A. A Bi-Functional Targeted P28-NRC Chimeric Protein with Enhanced Cytotoxic Effects on Breast Cancer Cell Lines. Iran J Pharm Res 2019;18:735-44. [PMID: 31531057 DOI: 10.22037/ijpr.2019.2392] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
156 Ahmad K, Lee EJ, Shaikh S, Kumar A, Rao KM, Park SY, Jin JO, Han SS, Choi I. Targeting integrins for cancer management using nanotherapeutic approaches: Recent advances and challenges. Semin Cancer Biol 2021;69:325-36. [PMID: 31454671 DOI: 10.1016/j.semcancer.2019.08.030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
157 Maia VSC, Berzaghi R, Arruda DC, Machado FC, Loureiro LL, Melo PMS, Morais AS, Budu A, Travassos LR. PLP2-derived peptide Rb4 triggers PARP-1-mediated necrotic death in murine melanoma cells. Sci Rep 2022;12:2890. [PMID: 35190586 DOI: 10.1038/s41598-022-06429-8] [Reference Citation Analysis]
158 Pourhadi M, Jamalzade F, Jahanian-Najafabadi A, Shafiee F. Expression, purification, and cytotoxic evaluation of IL24-BR2 fusion protein. Res Pharm Sci 2019;14:320-8. [PMID: 31516508 DOI: 10.4103/1735-5362.263556] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
159 Raj N, Helen A, Manoj N, Harish G, Thomas V, Singh S, Sehrawat S, Seth S, Nair AS, Grover A, Dhar PK. In silico study of peptide inhibitors against BACE 1. Syst Synth Biol 2015;9:67-72. [PMID: 25972990 DOI: 10.1007/s11693-015-9169-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
160 Erfani S, Moghimi A, Aboutaleb N, Khaksari M. Protective Effects of Nucleobinding-2 After Cerebral Ischemia Via Modulating Bcl-2/Bax Ratio and Reducing Glial Fibrillary Acid Protein Expression. Basic Clin Neurosci 2019;10:451-9. [PMID: 32284834 DOI: 10.32598/bcn.10.5.451] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
161 Tyagi A, Pankaj V, Singh S, Roy S, Semwal M, Shasany AK, Sharma A. PlantAFP: a curated database of plant-origin antifungal peptides. Amino Acids 2019;51:1561-8. [PMID: 31612325 DOI: 10.1007/s00726-019-02792-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
162 Manavalan B, Basith S, Shin TH, Choi S, Kim MO, Lee G. MLACP: machine-learning-based prediction of anticancer peptides. Oncotarget 2017;8:77121-36. [PMID: 29100375 DOI: 10.18632/oncotarget.20365] [Cited by in Crossref: 116] [Cited by in F6Publishing: 98] [Article Influence: 23.2] [Reference Citation Analysis]
163 Rodrigues G, Silva GGO, Buccini DF, Duque HM, Dias SC, Franco OL. Bacterial Proteinaceous Compounds With Multiple Activities Toward Cancers and Microbial Infection. Front Microbiol 2019;10:1690. [PMID: 31447795 DOI: 10.3389/fmicb.2019.01690] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
164 Fotoohi-Ardakani G, Kheirollahi M, Zarei Jaliani H, Noorian M, Ansariniyia H. Targeting MCF-7 Cell Line by Listeriolysin O Pore Forming Toxin Fusion with AHNP Targeted Peptide. Adv Biomed Res 2019;8:33. [PMID: 31259162 DOI: 10.4103/abr.abr_18_19] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
165 Adewale OB, Cairncross L, Xakaza H, Wickens N, Anadozie SO, Davids H, Roux S. Short- and long-term effect of colorectal cancer targeting peptides conjugated to gold nanoparticles in rats’ liver and colon after single exposure. Toxicol Res . [DOI: 10.1007/s43188-021-00108-y] [Reference Citation Analysis]
166 Zhang Y, Ouyang M, Wang H, Zhang B, Guang W, Liu R, Li X, Shih TC, Li Z, Cao J, Meng Q, Su Z, Ye J, Liu F, Hong A, Chen X. A cyclic peptide retards the proliferation of DU145 prostate cancer cells in vitro and in vivo through inhibition of FGFR2. MedComm (2020) 2020;1:362-75. [PMID: 34766128 DOI: 10.1002/mco2.48] [Reference Citation Analysis]
167 Shali H, Shabani M, Pourgholi F, Hajivalili M, Aghebati-maleki L, Jadidi-niaragh F, Baradaran B, Movassaghpour Akbari AA, Younesi V, Yousefi M. Co-delivery of insulin-like growth factor 1 receptor specific siRNA and doxorubicin using chitosan-based nanoparticles enhanced anticancer efficacy in A549 lung cancer cell line. Artificial Cells, Nanomedicine, and Biotechnology 2018;46:293-302. [DOI: 10.1080/21691401.2017.1307212] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.4] [Reference Citation Analysis]
168 Hazrati F, Saidijam M, Ahmadyousefi Y, Nouri F, Ghadimipour H, Moradi M, Haddadi R, Soleimani M. A novel chimeric protein with enhanced cytotoxic effects on breast cancer in vitro and in vivo. Proteins 2021. [PMID: 34812523 DOI: 10.1002/prot.26285] [Reference Citation Analysis]
169 Hossain F, Nishat S, Andreana PR. Synthesis of malformin‐A 1 , C, a glycan, and an aglycon analog: Potential scaffolds for targeted cancer therapy. Peptide Science. [DOI: 10.1002/pep2.24260] [Reference Citation Analysis]
170 Ghasemi K, Ghasemi K. MSX-122: Is an effective small molecule CXCR4 antagonist in cancer therapy? Int Immunopharmacol 2022;108:108863. [PMID: 35623288 DOI: 10.1016/j.intimp.2022.108863] [Reference Citation Analysis]
171 Poon C, Chowdhuri S, Kuo CH, Fang Y, Alenghat FJ, Hyatt D, Kani K, Gross ME, Chung EJ. Protein Mimetic and Anticancer Properties of Monocyte-Targeting Peptide Amphiphile Micelles. ACS Biomater Sci Eng 2017;3:3273-82. [PMID: 29302619 DOI: 10.1021/acsbiomaterials.7b00600] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
172 Taghizadeh MS, Niazi A, Moghadam A, Afsharifar AR. The potential application of the protein hydrolysates of three medicinal plants: cytotoxicity and functional properties. Journal of Food Science 2020;85:3160-7. [DOI: 10.1111/1750-3841.15379] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
173 Orona-tamayo D, Valverde ME, Paredes-lópez O. Bioactive peptides from selected latin american food crops – A nutraceutical and molecular approach. Critical Reviews in Food Science and Nutrition 2018;59:1949-75. [DOI: 10.1080/10408398.2018.1434480] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
174 Rezaei N, Mehrnejad F, Vaezi Z, Sedghi M, Asghari SM, Naderi-Manesh H. Encapsulation of an endostatin peptide in liposomes: Stability, release, and cytotoxicity study. Colloids Surf B Biointerfaces 2020;185:110552. [PMID: 31648117 DOI: 10.1016/j.colsurfb.2019.110552] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
175 Broda E, Mickler FM, Lächelt U, Morys S, Wagner E, Bräuchle C. Assessing potential peptide targeting ligands by quantification of cellular adhesion of model nanoparticles under flow conditions. J Control Release 2015;213:79-85. [PMID: 26134072 DOI: 10.1016/j.jconrel.2015.06.030] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
176 Lunagariya J, Liao X, Long W, Zhong S, Bhadja P, Li H, Zhao B, Xu S. Cytotoxicity Study of Cyclopentapeptide Analogues of Marine Natural Product Galaxamide towards Human Breast Cancer Cells. Oxid Med Cell Longev. 2017;2017:8392035. [PMID: 29410736 DOI: 10.1155/2017/8392035] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
177 Tyagi A, Tuknait A, Anand P, Gupta S, Sharma M, Mathur D, Joshi A, Singh S, Gautam A, Raghava GP. CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res 2015;43:D837-43. [PMID: 25270878 DOI: 10.1093/nar/gku892] [Cited by in Crossref: 129] [Cited by in F6Publishing: 116] [Article Influence: 16.1] [Reference Citation Analysis]
178 Kalmodia S, Vandhana S, Tejaswini Rama BR, Jayashree B, Sreenivasan Seethalakshmi T, Umashankar V, Yang W, Barrow CJ, Krishnakumar S, Elchuri SV. Bio-conjugation of antioxidant peptide on surface-modified gold nanoparticles: a novel approach to enhance the radical scavenging property in cancer cell. Cancer Nanotechnol 2016;7:1. [PMID: 26900409 DOI: 10.1186/s12645-016-0013-x] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
179 Huang HN, Rajanbabu V, Pan CY, Chan YL, Chen JY, Wu CJ. Enhanced Control of Bladder-Associated Tumors Using Shrimp Anti-Lipopolysaccharide Factor (SALF) Antimicrobial Peptide as a Cancer Vaccine Adjuvant in Mice. Mar Drugs 2015;13:3241-58. [PMID: 26006716 DOI: 10.3390/md13053241] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
180 Macdonald J, Henri J, Roy K, Hays E, Bauer M, Veedu RN, Pouliot N, Shigdar S. EpCAM Immunotherapy versus Specific Targeted Delivery of Drugs. Cancers (Basel) 2018;10:E19. [PMID: 29329202 DOI: 10.3390/cancers10010019] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
181 Liu Y, Kim YJ, Siriwon N, Rohrs JA, Yu Z, Wanga P. Combination drug delivery via multilamellar vesicles enables targeting of tumor cells and tumor vasculature. Biotechnol Bioeng 2018;115:1403-15. [PMID: 29457630 DOI: 10.1002/bit.26566] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
182 Zou H, Yang F, Yin Z. iTTCA-MFF: identifying tumor T cell antigens based on multiple feature fusion. Immunogenetics 2022. [PMID: 35246701 DOI: 10.1007/s00251-022-01258-5] [Reference Citation Analysis]
183 Liolios C, Patsis C, Lambrinidis G, Tzortzini E, Roscher M, Bauder-Wüst U, Kolocouris A, Kopka K. Investigation of Tumor Cells and Receptor-Ligand Simulation Models for the Development of PET Imaging Probes Targeting PSMA and GRPR and a Possible Crosstalk between the Two Receptors. Mol Pharm 2022. [PMID: 35467350 DOI: 10.1021/acs.molpharmaceut.2c00070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
184 Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK. Enhanced Permeability and Retention Effect: A key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther 2022;:102915. [PMID: 35597441 DOI: 10.1016/j.pdpdt.2022.102915] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
185 Aaghaz S, Gohel V, Kamal A. Peptides as Potential Anticancer Agents. CTMC 2019;19:1491-511. [DOI: 10.2174/1568026619666190125161517] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
186 Guidotti G, Brambilla L, Rossi D. Exploring Novel Molecular Targets for the Treatment of High-Grade Astrocytomas Using Peptide Therapeutics: An Overview. Cells 2020;9:E490. [PMID: 32093304 DOI: 10.3390/cells9020490] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
187 Zou H, Yang F, Yin Z. Integrating multiple sequence features for identifying anticancer peptides. Computational Biology and Chemistry 2022;99:107711. [DOI: 10.1016/j.compbiolchem.2022.107711] [Reference Citation Analysis]
188 Singh A, Deshpande N, Pramanik N, Jhunjhunwala S, Rangarajan A, Atreya HS. Optimized peptide based inhibitors targeting the dihydrofolate reductase pathway in cancer. Sci Rep 2018;8:3190. [PMID: 29453377 DOI: 10.1038/s41598-018-21435-5] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
189 Mehrotra N, Kharbanda S, Singh H. Peptide-based combination nanoformulations for cancer therapy. Nanomedicine (Lond) 2020;15:2201-17. [PMID: 32914691 DOI: 10.2217/nnm-2020-0220] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
190 Aronson MR, Dahl ES, Halle JA, Simonson AW, Gogal RA, Glick AB, Aird KM, Medina SH. Re-engineering Antimicrobial Peptides into Oncolytics Targeting Drug-Resistant Ovarian Cancers. Cell Mol Bioeng 2020;13:447-61. [PMID: 33184577 DOI: 10.1007/s12195-020-00626-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
191 Liolios CC, Xanthopoulos S, Loudos G, Varvarigou AD, Sivolapenko GB. Co-administration of succinylated gelatine with a (99m)Tc-bombesin analogue, effects on pharmacokinetics and tumor uptake. Nucl Med Biol 2016;43:625-34. [PMID: 27497631 DOI: 10.1016/j.nucmedbio.2016.07.005] [Reference Citation Analysis]
192 Farsinejad S, Gheisary Z, Ebrahimi Samani S, Alizadeh AM. Mitochondrial targeted peptides for cancer therapy. Tumor Biol 2015;36:5715-25. [DOI: 10.1007/s13277-015-3719-1] [Cited by in Crossref: 44] [Cited by in F6Publishing: 41] [Article Influence: 6.3] [Reference Citation Analysis]
193 Timur SS, Gürsoy RN. The role of peptide-based therapeutics in oncotherapy. J Drug Target 2021;:1-15. [PMID: 33775190 DOI: 10.1080/1061186X.2021.1906884] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
194 Jafarzadeh M, Mousavizadeh K, Joghataei MT, Bahremani MH, Safa M, Asghari SM. A Fibroblast Growth Factor Antagonist Peptide Inhibits Breast Cancer in BALB/c Mice. Open Life Sci 2018;13:348-54. [PMID: 33817103 DOI: 10.1515/biol-2018-0043] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
195 Cesarini V, Scopa C, Silvestris DA, Scafidi A, Petrera V, Del Baldo G, Gallo A. Aptamer-Based In Vivo Therapeutic Targeting of Glioblastoma. Molecules 2020;25:E4267. [PMID: 32957732 DOI: 10.3390/molecules25184267] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
196 Liang X, Li F, Chen J, Li J, Wu H, Li S, Song J, Liu Q. Large-scale comparative review and assessment of computational methods for anti-cancer peptide identification. Brief Bioinform 2021;22:bbaa312. [PMID: 33316035 DOI: 10.1093/bib/bbaa312] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
197 Guidotti G, Brambilla L, Rossi D. Peptides in clinical development for the treatment of brain tumors. Current Opinion in Pharmacology 2019;47:102-9. [DOI: 10.1016/j.coph.2019.02.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
198 Yang L, Cui Y, Shen J, Lin F, Wang X, Long M, Wei J, Zhang H. Antitumor activity of SA12, a novel peptide, on SKBr-3 breast cancer cells via the mitochondrial apoptosis pathway. Drug Des Devel Ther 2015;9:1319-30. [PMID: 25767377 DOI: 10.2147/DDDT.S75780] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.1] [Reference Citation Analysis]
199 Pandey A, Singh K, Subramanian S, Korde A, Singh R, Sawant K. Heterogeneous surface architectured pH responsive Metal-Drug Nano-conjugates for mitochondria targeted therapy of Glioblastomas: A multimodal intranasal approach. Chemical Engineering Journal 2020;394:124419. [DOI: 10.1016/j.cej.2020.124419] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
200 Ali H, Jabeen A, Maharjan R, Nadeem-Ul-Haque M, Aamra H, Nazir S, Khan S, Olleik H, Maresca M, Shaheen F. Furan-Conjugated Tripeptides as Potent Antitumor Drugs. Biomolecules 2020;10:E1684. [PMID: 33339257 DOI: 10.3390/biom10121684] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
201 [DOI: 10.1145/3168776.3168787] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
202 Lee JW, Choi SR, Heo JH. Simultaneous Stabilization and Functionalization of Gold Nanoparticles via Biomolecule Conjugation: Progress and Perspectives. ACS Appl Mater Interfaces 2021;13:42311-28. [PMID: 34464527 DOI: 10.1021/acsami.1c10436] [Reference Citation Analysis]
203 Cicero AFG, Fogacci F, Colletti A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. Br J Pharmacol 2017;174:1378-94. [PMID: 27572703 DOI: 10.1111/bph.13608] [Cited by in Crossref: 130] [Cited by in F6Publishing: 108] [Article Influence: 21.7] [Reference Citation Analysis]
204 Pirooznia N, Abdi K, Beiki D, Emami F, Arab SS, Sabzevari O, Pakdin-Parizi Z, Geramifar P. Radiosynthesis, Biological Evaluation, and Preclinical Study of a 68Ga-Labeled Cyclic RGD Peptide as an Early Diagnostic Agent for Overexpressed α v β 3 Integrin Receptors in Non-Small-Cell Lung Cancer. Contrast Media Mol Imaging 2020;2020:8421657. [PMID: 32292304 DOI: 10.1155/2020/8421657] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
205 Tetley GJN, Szeto A, Fountain AJ, Mott HR, Owen D. Bond swapping from a charge cloud allows flexible coordination of upstream signals through WASP: Multiple regulatory roles for the WASP basic region. J Biol Chem 2018;293:15136-51. [PMID: 30104412 DOI: 10.1074/jbc.RA118.003290] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
206 Mazaheri Tehrani M, Erfani M, Amirmozafari N, Nejadsattari T. Evaluation of 99m Tc-MccJ25 peptide analog in mice bearing B16F10 melanoma tumor as a diagnostic radiotracer. Asia Ocean J Nucl Med Biol 2019;7:172-80. [PMID: 31380457 DOI: 10.22038/AOJNMB.2019.37712.1251] [Reference Citation Analysis]
207 Ghulam A, Ali F, Sikander R, Ahmad A, Ahmed A, Patil S. ACP-2DCNN: Deep learning-based model for improving prediction of anticancer peptides using two-dimensional convolutional neural network. Chemometrics and Intelligent Laboratory Systems 2022;226:104589. [DOI: 10.1016/j.chemolab.2022.104589] [Reference Citation Analysis]
208 da Costa JP, Carvalhais V, Amado F, Silva A, Nogueira-Ferreira R, Ferreira R, Helguero L, Vitorino R. Anti-tumoral activity of human salivary peptides. Peptides 2015;71:170-8. [PMID: 26211891 DOI: 10.1016/j.peptides.2015.07.014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
209 Koushki K, Varasteh AR, Shahbaz SK, Sadeghi M, Mashayekhi K, Ayati SH, Moghadam M, Sankian M. Dc-specific aptamer decorated gold nanoparticles: A new attractive insight into the nanocarriers for allergy epicutaneous immunotherapy. Int J Pharm 2020;584:119403. [PMID: 32387307 DOI: 10.1016/j.ijpharm.2020.119403] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
210 Pentlavalli S, Coulter S, Laverty G. Peptide Nanomaterials for Drug Delivery Applications. Curr Protein Pept Sci 2020;21:401-12. [PMID: 31893991 DOI: 10.2174/1389203721666200101091834] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
211 Peres Lde P, da Luz FA, Pultz Bdos A, Brígido PC, de Araújo RA, Goulart LR, Silva MJ. Peptide vaccines in breast cancer: The immunological basis for clinical response. Biotechnol Adv 2015;33:1868-77. [PMID: 26523780 DOI: 10.1016/j.biotechadv.2015.10.013] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.1] [Reference Citation Analysis]
212 El-Fadl HMA, Hagag NM, El-Shafei RA, Khayri MH, El-Gedawy G, Maksoud AIAE, Mohamed DD, Mohamed DD, El Halfawy I, Khoder AI, Elawdan KA, Elshal MF, Salah A, Khalil H. Effective Targeting of Raf-1 and Its Associated Autophagy by Novel Extracted Peptide for Treating Breast Cancer Cells. Front Oncol 2021;11:682596. [PMID: 34513674 DOI: 10.3389/fonc.2021.682596] [Reference Citation Analysis]
213 Rasoolian M, Kheirollahi M, Hosseini SY. MDA-7/interleukin 24 (IL-24) in tumor gene therapy: application of tumor penetrating/homing peptides for improvement of the effects. Expert Opin Biol Ther 2019;19:211-23. [PMID: 30612497 DOI: 10.1080/14712598.2019.1566453] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
214 Joo J, Poon C, Yoo SP, Chung EJ. Shape Effects of Peptide Amphiphile Micelles for Targeting Monocytes. Molecules 2018;23:E2786. [PMID: 30373234 DOI: 10.3390/molecules23112786] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
215 Sahna KO, Cakir B, Tunali-akbay T. Antiproliferative Activity of Whey and Casein Bioactive Peptides on Breast Cancer: An In Vitro and In Silico Study. Int J Pept Res Ther 2022;28. [DOI: 10.1007/s10989-022-10436-8] [Reference Citation Analysis]
216 Wan Y, Wang Z, Lee TY. Incorporating support vector machine with sequential minimal optimization to identify anticancer peptides. BMC Bioinformatics 2021;22:286. [PMID: 34051755 DOI: 10.1186/s12859-021-03965-4] [Reference Citation Analysis]
217 Parakasikron N, Chaotham C, Chanvorachote P, Vinayanuwattikun C, Buranasudja V, Taweecheep P, Khantasup K. Development of a human antibody fragment directed against the alpha folate receptor as a promising molecule for targeted application. Drug Deliv 2021;28:1443-54. [PMID: 34236266 DOI: 10.1080/10717544.2021.1943055] [Reference Citation Analysis]
218 Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 2020;57:678-96. [PMID: 32705178 DOI: 10.3892/ijo.2020.5099] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 13.0] [Reference Citation Analysis]
219 Pirooznia N, Abdi K, Beiki D, Emami F, Arab SS, Sabzevari O, Soltani-Gooshkhaneh S. 177Lu-labeled cyclic RGD peptide as an imaging and targeted radionuclide therapeutic agent in non-small cell lung cancer: Biological evaluation and preclinical study. Bioorg Chem 2020;102:104100. [PMID: 32711088 DOI: 10.1016/j.bioorg.2020.104100] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
220 Paiva AE, Lousado L, Guerra DAP, Azevedo PO, Sena IFG, Andreotti JP, Santos GSP, Gonçalves R, Mintz A, Birbrair A. Pericytes in the Premetastatic Niche. Cancer Res 2018;78:2779-86. [PMID: 29789421 DOI: 10.1158/0008-5472.CAN-17-3883] [Cited by in Crossref: 39] [Cited by in F6Publishing: 28] [Article Influence: 9.8] [Reference Citation Analysis]
221 Liu W, Tang H, Li L, Wang X, Yu Z, Li J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif 2021;54:e13025. [PMID: 33754407 DOI: 10.1111/cpr.13025] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
222 Fang J, Barker B, Bolanos L, Liu X, Jerez A, Makishima H, Christie S, Chen X, Rao DS, Grimes HL, Komurov K, Weirauch MT, Cancelas JA, Maciejewski JP, Starczynowski DT. Myeloid malignancies with chromosome 5q deletions acquire a dependency on an intrachromosomal NF-κB gene network. Cell Rep 2014;8:1328-38. [PMID: 25199827 DOI: 10.1016/j.celrep.2014.07.062] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 5.1] [Reference Citation Analysis]
223 Biswas S, Samui S, Biswas S, Das AK, Naskar J. Molecular recognition of double-stranded DNA by a synthetic, homoaromatic tripeptide (YYY): The spectroscopic and calorimetric study. International Journal of Biological Macromolecules 2019;123:221-7. [DOI: 10.1016/j.ijbiomac.2018.11.012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
224 Ghavimi R, Mohammadi E, Akbari V, Shafiee F, Jahanian-Najafabadi A. In silico design of two novel fusion proteins, p28-IL-24 and p28-M4, targeted to breast cancer cells. Res Pharm Sci 2020;15:200-8. [PMID: 32582360 DOI: 10.4103/1735-5362.283820] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
225 Feng P, Wang Z. Recent Advances in Computational Methods for Identifying Anticancer Peptides. Curr Drug Targets 2019;20:481-7. [PMID: 30068270 DOI: 10.2174/1389450119666180801121548] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
226 Sharma P, Kaur H, Kehinde BA, Chhikara N, Sharma D, Panghal A. Food-Derived Anticancer Peptides: A Review. Int J Pept Res Ther 2021;27:55-70. [DOI: 10.1007/s10989-020-10063-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
227 Ahmed S, Muhammod R, Khan ZH, Adilina S, Sharma A, Shatabda S, Dehzangi A. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides. Sci Rep 2021;11:23676. [PMID: 34880291 DOI: 10.1038/s41598-021-02703-3] [Reference Citation Analysis]
228 Aziz E, Batool R, Khan MU, Rauf A, Akhtar W, Heydari M, Rehman S, Shahzad T, Malik A, Mosavat SH, Plygun S, Shariati MA. An overview on red algae bioactive compounds and their pharmaceutical applications. J Complement Integr Med 2020:/j/jcim. [PMID: 32697756 DOI: 10.1515/jcim-2019-0203] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]