BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiological Reviews 2018;98:2225-86. [DOI: 10.1152/physrev.00042.2017] [Cited by in Crossref: 80] [Cited by in F6Publishing: 70] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Hupalo S, Bryce CA, Bangasser DA, Berridge CW, Valentino RJ, Floresco SB. Corticotropin-Releasing Factor (CRF) circuit modulation of cognition and motivation. Neurosci Biobehav Rev 2019;103:50-9. [PMID: 31212019 DOI: 10.1016/j.neubiorev.2019.06.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
2 Ding H, Cui SY, Cui XY, Liu YT, Hu X, Zhao HL, Qin Y, Kurban N, Zhang YH. Anti-stress effects of combined block of glucocorticoid and mineralocorticoid receptors in the paraventricular nucleus of the hypothalamus. Br J Pharmacol 2021;178:3696-707. [PMID: 33908038 DOI: 10.1111/bph.15511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Wu PF, Han QQ, Chen FF, Shen TT, Li YH, Cao Y, Chen JG, Wang F. Erasing m6A-dependent transcription signature of stress-sensitive genes triggers antidepressant actions. Neurobiol Stress 2021;15:100390. [PMID: 34527794 DOI: 10.1016/j.ynstr.2021.100390] [Reference Citation Analysis]
4 Bolton JL, Short AK, Simeone KA, Daglian J, Baram TZ. Programming of Stress-Sensitive Neurons and Circuits by Early-Life Experiences. Front Behav Neurosci 2019;13:30. [PMID: 30833892 DOI: 10.3389/fnbeh.2019.00030] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
5 Balogh B, Vecsernyés M, Veres-székely A, Berta G, Stayer-harci A, Tarjányi O, Sétáló G. Urocortin stimulates ERK1/2 phosphorylation and proliferation but reduces ATP production of MCF7 breast cancer cells. Molecular and Cellular Endocrinology 2022. [DOI: 10.1016/j.mce.2022.111610] [Reference Citation Analysis]
6 Kovács LÁ, Berta G, Csernus V, Ujvári B, Füredi N, Gaszner B. Corticotropin-Releasing Factor-Producing Cells in the Paraventricular Nucleus of the Hypothalamus and Extended Amygdala Show Age-Dependent FOS and FOSB/DeltaFOSB Immunoreactivity in Acute and Chronic Stress Models in the Rat. Front Aging Neurosci 2019;11:274. [PMID: 31649527 DOI: 10.3389/fnagi.2019.00274] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
7 Barretto-de-Souza L, Benini R, Reis-Silva LL, Crestani CC. Role of CRF1 and CRF2 receptors in the lateral hypothalamus in cardiovascular and anxiogenic responses evoked by restraint stress in rats: Evaluation of acute and chronic exposure. Neuropharmacology 2022;:109061. [PMID: 35452627 DOI: 10.1016/j.neuropharm.2022.109061] [Reference Citation Analysis]
8 Ponzoni L, Braida D, Carboni L, Moretti M, Viani P, Clementi F, Zoli M, Gotti C, Sala M. Persistent cognitive and affective alterations at late withdrawal stages after long-term intermittent exposure to tobacco smoke or electronic cigarette vapour: Behavioural changes and their neurochemical correlates. Pharmacol Res 2020;158:104941. [PMID: 32450347 DOI: 10.1016/j.phrs.2020.104941] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Doslikova B, Tchir D, McKinty A, Zhu X, Marks DL, Baracos VE, Colmers WF. Convergent neuronal projections from paraventricular nucleus, parabrachial nucleus, and brainstem onto gastrocnemius muscle, white and brown adipose tissue in male rats. J Comp Neurol 2019;527:2826-42. [PMID: 31045239 DOI: 10.1002/cne.24710] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
10 Grone BP, Butler JM, Wayne CR, Maruska KP. Expression patterns and evolution of urocortin and corticotropin‐releasing hormone genes in a cichlid fish. J Comp Neurol 2021;529:2596-619. [DOI: 10.1002/cne.25113] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Lovejoy DA, Hogg DW, Dodsworth TL, Jurado FR, Read CC, D'Aquila AL, Barsyte-Lovejoy D. Synthetic Peptides as Therapeutic Agents: Lessons Learned From Evolutionary Ancient Peptides and Their Transit Across Blood-Brain Barriers. Front Endocrinol (Lausanne) 2019;10:730. [PMID: 31781029 DOI: 10.3389/fendo.2019.00730] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Tillinger A, Mravec B. Vagotomy Affects Lipopolysaccharide-Induced Changes of Urocortin 2 Gene Expression in the Brain and on the Periphery. Neurochem Res 2021;46:159-64. [PMID: 33170479 DOI: 10.1007/s11064-020-03165-1] [Reference Citation Analysis]
13 Squillacioti C, Pelagalli A, Liguori G, Mirabella N. Urocortins in the mammalian endocrine system. Acta Vet Scand 2019;61:46. [PMID: 31585551 DOI: 10.1186/s13028-019-0480-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
14 Romero-Leguizamón CR, Kohlmeier KA. Stress-related endogenous neuropeptides induce neuronal excitation in the Laterodorsal Tegmentum. Eur Neuropsychopharmacol 2020;38:86-97. [PMID: 32768153 DOI: 10.1016/j.euroneuro.2020.07.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Bhuiyan P, Wang YW, Sha HH, Dong HQ, Qian YN. Neuroimmune connections between corticotropin-releasing hormone and mast cells: novel strategies for the treatment of neurodegenerative diseases. Neural Regen Res 2021;16:2184-97. [PMID: 33818491 DOI: 10.4103/1673-5374.310608] [Reference Citation Analysis]
16 Hata Y, Shimizu T, Zou S, Yamamoto M, Shimizu Y, Ono H, Aratake T, Shimizu S, Higashi Y, Shimizu N, Karashima T, Saito M. Stimulation of brain corticotropin-releasing factor receptor type1 facilitates the rat micturition via brain glutamatergic receptors. Biochem Biophys Res Commun 2022;607:54-9. [PMID: 35366544 DOI: 10.1016/j.bbrc.2022.03.124] [Reference Citation Analysis]
17 Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020;11:44. [PMID: 32727567 DOI: 10.1186/s13293-020-00319-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
18 Goldstein DS. Stress and the "extended" autonomic system. Auton Neurosci 2021;236:102889. [PMID: 34656967 DOI: 10.1016/j.autneu.2021.102889] [Reference Citation Analysis]
19 Liang YL, Belousoff MJ, Zhao P, Koole C, Fletcher MM, Truong TT, Julita V, Christopoulos G, Xu HE, Zhang Y, Khoshouei M, Christopoulos A, Danev R, Sexton PM, Wootten D. Toward a Structural Understanding of Class B GPCR Peptide Binding and Activation. Mol Cell 2020;77:656-668.e5. [PMID: 32004469 DOI: 10.1016/j.molcel.2020.01.012] [Cited by in Crossref: 41] [Cited by in F6Publishing: 30] [Article Influence: 20.5] [Reference Citation Analysis]
20 Yuan J, Hasdemir B, Tan T, Chheda C, Rivier J, Pandol SJ, Bhargava A. Protective effects of urocortin 2 against caerulein-induced acute pancreatitis. PLoS One 2019;14:e0217065. [PMID: 31100090 DOI: 10.1371/journal.pone.0217065] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
21 Pereira G, Gillies H, Chanda S, Corbett M, Vernon SD, Milani T, Bateman L. Acute Corticotropin-Releasing Factor Receptor Type 2 Agonism Results in Sustained Symptom Improvement in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Syst Neurosci 2021;15:698240. [PMID: 34539356 DOI: 10.3389/fnsys.2021.698240] [Reference Citation Analysis]
22 Dick A, Chen A. The role of TET proteins in stress-induced neuroepigenetic and behavioural adaptations. Neurobiol Stress 2021;15:100352. [PMID: 34189192 DOI: 10.1016/j.ynstr.2021.100352] [Reference Citation Analysis]
23 Tasma Z, Wills P, Hay DL, Walker CS. Agonist bias and agonist-dependent antagonism at corticotrophin releasing factor receptors. Pharmacol Res Perspect 2020;8:e00595. [PMID: 32529807 DOI: 10.1002/prp2.595] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Ahmad MH, Rizvi MA, Fatima M, Mondal AC. Pathophysiological implications of neuroinflammation mediated HPA axis dysregulation in the prognosis of cancer and depression. Mol Cell Endocrinol 2021;520:111093. [PMID: 33253761 DOI: 10.1016/j.mce.2020.111093] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
25 Deslauriers J, Toth M, Scadeng M, McKenna BS, Bussell R, Gresack J, Rissman R, Risbrough VB, Brown GG. DTI-identified microstructural changes in the gray matter of mice overexpressing CRF in the forebrain. Psychiatry Res Neuroimaging 2020;304:111137. [PMID: 32731113 DOI: 10.1016/j.pscychresns.2020.111137] [Reference Citation Analysis]
26 Bouyoucos IA, Schoen AN, Wahl RC, Anderson WG. Ancient fishes and the functional evolution of the corticosteroid stress response in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021;260:111024. [PMID: 34237466 DOI: 10.1016/j.cbpa.2021.111024] [Reference Citation Analysis]
27 Tsushima H, Zhang Y, Muratsubaki T, Kanazawa M, Fukudo S. Oxytocin antagonist induced visceral pain and corticotropin-releasing hormone neuronal activation in the central nucleus of the amygdala during colorectal distention in mice. Neurosci Res 2021;168:41-53. [PMID: 33932549 DOI: 10.1016/j.neures.2021.04.011] [Reference Citation Analysis]
28 Henshall C, Randle H, Francis N, Freire R. The effect of stress and exercise on the learning performance of horses. Sci Rep 2022;12:1918. [PMID: 35121736 DOI: 10.1038/s41598-021-03582-4] [Reference Citation Analysis]
29 Yarur HE, Andrés ME, Gysling K. Type 2β Corticotrophin Releasing Factor Receptor Forms a Heteromeric Complex With Dopamine D1 Receptor in Living Cells. Front Pharmacol 2019;10:1501. [PMID: 31969820 DOI: 10.3389/fphar.2019.01501] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Aroni S, Marino RAM, Girven KS, Irving JM, Cheer JF, Sparta DR. Repeated binge ethanol drinking enhances electrical activity of central amygdala corticotropin releasing factor neurons in vivo. Neuropharmacology 2021;189:108527. [PMID: 33741403 DOI: 10.1016/j.neuropharm.2021.108527] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
31 Comeras LB, Herzog H, Tasan RO. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann N Y Acad Sci 2019;1455:59-80. [PMID: 31271235 DOI: 10.1111/nyas.14179] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
32 Winter J, Meyer M, Berger I, Royer M, Bianchi M, Kuffner K, Peters S, Stang S, Langgartner D, Hartmann F, Schmidtner AK, Reber SO, Bosch OJ, Bludau A, Slattery DA, van den Burg EH, Jurek B, Neumann ID. Chronic oxytocin-driven alternative splicing of Crfr2α induces anxiety. Mol Psychiatry 2021. [PMID: 34035479 DOI: 10.1038/s41380-021-01141-x] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
33 Kamohara H, Kamohara T, Hikasa Y. Effects of pretreatment with medetomidine, midazolam, ketamine, and their combinations on stress-related hormonal and metabolic responses in isoflurane-anesthetized cats undergoing surgery. J Adv Vet Anim Res 2021;8:563-75. [PMID: 35106295 DOI: 10.5455/javar.2021.h546] [Reference Citation Analysis]
34 Parra-Mercado GK, Fuentes-Gonzalez AM, Hernandez-Aranda J, Diaz-Coranguez M, Dautzenberg FM, Catt KJ, Hauger RL, Olivares-Reyes JA. CRF1 Receptor Signaling via the ERK1/2-MAP and Akt Kinase Cascades: Roles of Src, EGF Receptor, and PI3-Kinase Mechanisms. Front Endocrinol (Lausanne) 2019;10:869. [PMID: 31920979 DOI: 10.3389/fendo.2019.00869] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
35 Monteiro-pinto C, Adão R, Leite-moreira AF, Brás-silva C. Cardiovascular Effects of Urocortin-2: Pathophysiological Mechanisms and Therapeutic Potential. Cardiovasc Drugs Ther 2019;33:599-613. [DOI: 10.1007/s10557-019-06895-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
36 Pagella S, Deussing JM, Kopp-Scheinpflug C. Expression Patterns of the Neuropeptide Urocortin 3 and Its Receptor CRFR2 in the Mouse Central Auditory System. Front Neural Circuits 2021;15:747472. [PMID: 34867212 DOI: 10.3389/fncir.2021.747472] [Reference Citation Analysis]
37 Lee CR, Chen A, Tye KM. The neural circuitry of social homeostasis: Consequences of acute versus chronic social isolation. Cell 2021;184:1500-16. [PMID: 33691140 DOI: 10.1016/j.cell.2021.02.028] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Fischer S. The hypothalamus in anxiety disorders. Handb Clin Neurol 2021;180:149-60. [PMID: 34225926 DOI: 10.1016/B978-0-12-820107-7.00009-4] [Reference Citation Analysis]
39 Lopez JP, Brivio E, Santambrogio A, De Donno C, Kos A, Peters M, Rost N, Czamara D, Brückl TM, Roeh S, Pöhlmann ML, Engelhardt C, Ressle A, Stoffel R, Tontsch A, Villamizar JM, Reincke M, Riester A, Sbiera S, Fassnacht M, Mayberg HS, Craighead WE, Dunlop BW, Nemeroff CB, Schmidt MV, Binder EB, Theis FJ, Beuschlein F, Andoniadou CL, Chen A. Single-cell molecular profiling of all three components of the HPA axis reveals adrenal ABCB1 as a regulator of stress adaptation. Sci Adv 2021;7:eabe4497. [PMID: 33571131 DOI: 10.1126/sciadv.abe4497] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Grinevich V, Neumann ID. Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Mol Psychiatry 2021;26:265-79. [PMID: 32514104 DOI: 10.1038/s41380-020-0802-9] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
41 Ventura-Silva AP, Borges S, Sousa N, Rodrigues AJ, Pêgo JM. Amygdalar corticotropin-releasing factor mediates stress-induced anxiety. Brain Res 2020;1729:146622. [PMID: 31881185 DOI: 10.1016/j.brainres.2019.146622] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
42 Tejeda HA, Wang H, Flores RJ, Yarur HE. Dynorphin/Kappa-Opioid Receptor System Modulation of Cortical Circuitry. Handb Exp Pharmacol 2021. [PMID: 33580392 DOI: 10.1007/164_2021_440] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021;11:2097-134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Reference Citation Analysis]
44 Garrido A, Vera G, Delaye PO, Enguehard-Gueiffier C. Imidazo[1,2-b]pyridazine as privileged scaffold in medicinal chemistry: An extensive review. Eur J Med Chem 2021;226:113867. [PMID: 34607244 DOI: 10.1016/j.ejmech.2021.113867] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Shimizu T, Shimizu S, Higashi Y, Saito M. Psychological/mental stress-induced effects on urinary function: Possible brain molecules related to psychological/mental stress-induced effects on urinary function. Int J Urol 2021. [PMID: 34387005 DOI: 10.1111/iju.14663] [Reference Citation Analysis]
46 Tillinger A, Padová A, Mravec B, Tomova A. Stressors affect urocortin 1 and urocortin 2 gene expression in rat spleen: The role of glucocorticoids. J Neuroimmunol 2019;336:577030. [PMID: 31473519 DOI: 10.1016/j.jneuroim.2019.577030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
47 Vandael D, Gounko NV. Corticotropin releasing factor-binding protein (CRF-BP) as a potential new therapeutic target in Alzheimer's disease and stress disorders. Transl Psychiatry 2019;9:272. [PMID: 31641098 DOI: 10.1038/s41398-019-0581-8] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
48 Yamato S, Kurematsu A, Amano T, Ariga H, Ando T, Komaki G, Wada K. Urocortin 1: A putative excitatory neurotransmitter in the enteric nervous system. Neurogastroenterol Motil 2020;32:e13842. [PMID: 32196844 DOI: 10.1111/nmo.13842] [Reference Citation Analysis]
49 Flisher MF, Shin D, Huising MO. Urocortin3: local inducer of somatostatin release and bellwether of beta cell maturity. Peptides 2022. [DOI: 10.1016/j.peptides.2022.170748] [Reference Citation Analysis]
50 Matthews GA, Tye KM. Neural mechanisms of social homeostasis. Ann N Y Acad Sci 2019;1457:5-25. [PMID: 30875095 DOI: 10.1111/nyas.14016] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 12.0] [Reference Citation Analysis]
51 Tang W, Zhou D, Wang S, Hao S, Wang X, Helmy M, Zhu J, Wang H. CRH Neurons in the Laterodorsal Tegmentum Mediate Acute Stress-induced Anxiety. Neurosci Bull 2021;37:999-1004. [PMID: 33844158 DOI: 10.1007/s12264-021-00684-x] [Reference Citation Analysis]
52 Mu MD, Geng HY, Rong KL, Peng RC, Wang ST, Geng LT, Qian ZM, Yung WH, Ke Y. A limbic circuitry involved in emotional stress-induced grooming. Nat Commun 2020;11:2261. [PMID: 32385304 DOI: 10.1038/s41467-020-16203-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
53 Preston G, Emmerzaal T, Kirdar F, Schrader L, Henckens M, Morava E, Kozicz T. Cerebellar mitochondrial dysfunction and concomitant multi-system fatty acid oxidation defects are sufficient to discriminate PTSD-like and resilient male mice. Brain Behav Immun Health 2020;6:100104. [PMID: 34589865 DOI: 10.1016/j.bbih.2020.100104] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
54 Liapakis G, Karageorgos V, Andreadelis I, Holz GG, Dermitzaki E, Kordopati GG, Stylos EΚ, Spyridaki K, Poulaki S, Ntountaniotis D, Sakellaris S, Vanioti M, Kostagianni A, Marousis KD, Leonis G, Kokotos G, Venihaki M, Spyroulias GA, Tselios T, Margioris A, Tzakos AG, Mavromoustakos T. Discovery of a stable tripeptide targeting the N-domain of CRF1 receptor. Amino Acids 2020;52:1337-51. [PMID: 32996057 DOI: 10.1007/s00726-020-02895-4] [Reference Citation Analysis]
55 Lichlyter DA, Krumm ZA, Golde TA, Doré S. Role of CRF and the hypothalamic-pituitary-adrenal axis in stroke: revisiting temporal considerations and targeting a new generation of therapeutics. FEBS J 2022. [PMID: 35108458 DOI: 10.1111/febs.16380] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Ujvári B, Pytel B, Márton Z, Bognár M, Kovács LÁ, Farkas J, Gaszner T, Berta G, Kecskés A, Kormos V, Farkas B, Füredi N, Gaszner B. Neurodegeneration in the centrally-projecting Edinger-Westphal nucleus contributes to the non-motor symptoms of Parkinson's disease in the rat. J Neuroinflammation 2022;19:31. [PMID: 35109869 DOI: 10.1186/s12974-022-02399-w] [Reference Citation Analysis]
57 Zalachoras I, Astori S, Meijer M, Grosse J, Zanoletti O, de Suduiraut IG, Deussing JM, Sandi C. Opposite effects of stress on effortful motivation in high and low anxiety are mediated by CRHR1 in the VTA. Sci Adv 2022;8:eabj9019. [PMID: 35319997 DOI: 10.1126/sciadv.abj9019] [Reference Citation Analysis]
58 McCabe JT, Tucker LB. Sex as a Biological Variable in Preclinical Modeling of Blast-Related Traumatic Brain Injury. Front Neurol 2020;11:541050. [PMID: 33101170 DOI: 10.3389/fneur.2020.541050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
59 Kooiker CL, Birnie MT, Baram TZ. The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Front Behav Neurosci 2021;15:673162. [PMID: 34079442 DOI: 10.3389/fnbeh.2021.673162] [Reference Citation Analysis]
60 Rein T. Post-translational modifications and stress adaptation: the paradigm of FKBP51. Biochem Soc Trans 2020;48:441-9. [PMID: 32318709 DOI: 10.1042/BST20190332] [Reference Citation Analysis]
61 Demarchi L, Pawluski JL, Bosch OJ. The brain oxytocin and corticotropin-releasing factor systems in grieving mothers: What we know and what we need to learn. Peptides 2021;143:170593. [PMID: 34091013 DOI: 10.1016/j.peptides.2021.170593] [Reference Citation Analysis]
62 Hammack SE, Braas KM, May V. Chemoarchitecture of the bed nucleus of the stria terminalis: Neurophenotypic diversity and function. Handb Clin Neurol 2021;179:385-402. [PMID: 34225977 DOI: 10.1016/B978-0-12-819975-6.00025-X] [Reference Citation Analysis]
63 Boero G, Tyler RE, Todd CA, O'Buckley TK, Balan I, Besheer J, Morrow AL. (3α,5α)3-hydroxypregnan-20-one (3α,5α-THP) regulation of hypothalamic and extrahypothalamic corticotropin releasing factor (CRF): Sexual dimorphism and brain region specificity in Sprague Dawley rats. Neuropharmacology 2021;186:108463. [PMID: 33460689 DOI: 10.1016/j.neuropharm.2021.108463] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Vasconcelos M, Stein DJ, Gallas-Lopes M, Landau L, de Almeida RMM. Corticotropin-releasing factor receptor signaling and modulation: implications for stress response and resilience. Trends Psychiatry Psychother 2020;42:195-206. [PMID: 32696892 DOI: 10.1590/2237-6089-2018-0027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
65 Ruat J, Hartmann A, Heinz DE, Nemcova P, Stoffel R, Deussing JM, Chen A, Wotjak CT. CB1 receptors in corticotropin-releasing factor neurons selectively control the acoustic startle response in male mice. Genes Brain Behav 2021;20:e12775. [PMID: 34672092 DOI: 10.1111/gbb.12775] [Reference Citation Analysis]
66 Oliveira LA, Gomes-de-Souza L, Benini R, Wood SK, Crestani CC. Both CRF1 and CRF2 receptors in the bed nucleus of stria terminalis are involved in baroreflex impairment evoked by chronic stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021;105:110009. [PMID: 32535028 DOI: 10.1016/j.pnpbp.2020.110009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Dedic N, Kühne C, Gomes KS, Hartmann J, Ressler KJ, Schmidt MV, Deussing JM. Deletion of CRH From GABAergic Forebrain Neurons Promotes Stress Resilience and Dampens Stress-Induced Changes in Neuronal Activity. Front Neurosci 2019;13:986. [PMID: 31619956 DOI: 10.3389/fnins.2019.00986] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
68 Denver RJ. Stress hormones mediate developmental plasticity in vertebrates with complex life cycles. Neurobiol Stress 2021;14:100301. [PMID: 33614863 DOI: 10.1016/j.ynstr.2021.100301] [Reference Citation Analysis]
69 Battaglia CR, Cursano S, Calzia E, Catanese A, Boeckers TM. Corticotropin-releasing hormone (CRH) alters mitochondrial morphology and function by activating the NF-kB-DRP1 axis in hippocampal neurons. Cell Death Dis 2020;11:1004. [PMID: 33230105 DOI: 10.1038/s41419-020-03204-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
70 Jia C, Drew Gill W, Lovins C, Brown RW, Hagg T. Female-specific role of ciliary neurotrophic factor in the medial amygdala in promoting stress responses. Neurobiology of Stress 2022. [DOI: 10.1016/j.ynstr.2022.100435] [Reference Citation Analysis]
71 Besnard A, Leroy F. Top-down regulation of motivated behaviors via lateral septum sub-circuits. Mol Psychiatry 2022. [PMID: 35581296 DOI: 10.1038/s41380-022-01599-3] [Reference Citation Analysis]
72 Yarur HE, Vega-Quiroga I, González MP, Noches V, Thomases DR, Andrés ME, Ciruela F, Tseng KY, Gysling K. Inhibitory Control of Basolateral Amygdalar Transmission to the Prefrontal Cortex by Local Corticotrophin Type 2 Receptor. Int J Neuropsychopharmacol 2020;23:108-16. [PMID: 31800046 DOI: 10.1093/ijnp/pyz065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
73 Vandael D, Wierda K, Vints K, Baatsen P, De Groef L, Moons L, Rybakin V, Gounko NV. Corticotropin-releasing factor induces functional and structural synaptic remodelling in acute stress. Transl Psychiatry 2021;11:378. [PMID: 34234103 DOI: 10.1038/s41398-021-01497-2] [Reference Citation Analysis]
74 Urbanavicius J, Fabius S, Roncalho A, Joca S, Torterolo P, Scorza C. Melanin-concentrating hormone in the Locus Coeruleus aggravates helpless behavior in stressed rats. Behav Brain Res 2019;374:112120. [PMID: 31376444 DOI: 10.1016/j.bbr.2019.112120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
75 Otsuka A, Shiuchi T, Chikahisa S, Shimizu N, Séi H. Sufficient intake of high-fat food attenuates stress-induced social avoidance behavior. Life Sci 2019;219:219-30. [PMID: 30653972 DOI: 10.1016/j.lfs.2019.01.012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
76 Zhang S, Lv F, Yuan Y, Fan C, Li J, Sun W, Hu J. Whole-Brain Mapping of Monosynaptic Afferent Inputs to Cortical CRH Neurons. Front Neurosci 2019;13:565. [PMID: 31213976 DOI: 10.3389/fnins.2019.00565] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
77 Reis-Silva LL, Barretto-de-Souza L, Benini R, Crestani CC. CRF1 and CRF2 receptors in the lateral hypothalamus differently modulate the baroreflex function in unanesthetized rats. Brain Res 2021;1751:147195. [PMID: 33159974 DOI: 10.1016/j.brainres.2020.147195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Wang Y, Chen ZP, Yang ZQ, Zhang XY, Li JM, Wang JJ, Zhu JN. Corticotropin-releasing factor depolarizes rat lateral vestibular nuclear neurons through activation of CRF receptors 1 and 2. Neuropeptides 2019;76:101934. [PMID: 31130301 DOI: 10.1016/j.npep.2019.05.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
79 Guo Q, Wang L, Yuan W, Li L, Zhang J, Hou W, Yang Y, Zhang X, Cai W, Ma H, Xun Y, Jia R, He Z, Tai F. Different effects of chronic social defeat on social behavior and the brain CRF system in adult male C57 mice with different susceptibilities. Behav Brain Res 2020;384:112553. [PMID: 32057826 DOI: 10.1016/j.bbr.2020.112553] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
80 Picard K, St-Pierre MK, Vecchiarelli HA, Bordeleau M, Tremblay MÈ. Neuroendocrine, neuroinflammatory and pathological outcomes of chronic stress: A story of microglial remodeling. Neurochem Int 2021;145:104987. [PMID: 33587954 DOI: 10.1016/j.neuint.2021.104987] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
81 Barretto-de-Souza L, Benini R, Reis-Silva LL, Crestani CC. Corticotropin-releasing factor neurotransmission in the lateral hypothalamus modulates the tachycardiac response during acute emotional stress in rats. Brain Res Bull 2021;166:102-9. [PMID: 33227387 DOI: 10.1016/j.brainresbull.2020.11.010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
82 Novoa J, Rivero CJ, Pérez-Cardona EU, Freire-Arvelo JA, Zegers J, Yarur HE, Santiago-Marerro IG, Agosto-Rivera JL, González-Pérez JL, Gysling K, Segarra AC. Social isolation of adolescent male rats increases anxiety and K+ -induced dopamine release in the nucleus accumbens: Role of CRF-R1. Eur J Neurosci 2021;54:4888-905. [PMID: 34097788 DOI: 10.1111/ejn.15345] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
83 Lerma-Cabrera JM, Arévalo-Romero CA, Cortés-Toledo GA, Adriasola-Carrasco AA, Carvajal F. Emotional Reactivity to Incentive Downshift in Adult Rats Exposed to Binge-Like Ethanol Exposure During Adolescence. Front Psychol 2019;10:315. [PMID: 30837923 DOI: 10.3389/fpsyg.2019.00315] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
84 Li LF, Zhang LZ, He ZX, Yuan W, Ma H, Xun YF, Zhang J, Hou WJ, Zhang XN, Cai WQ, Guo QQ, Jia R, Tai FD. CRF-CRFR1 system within the dorsal medial prefrontal cortex are involved in consolation deficits under acute restraint stress in mandarin voles. Psychoneuroendocrinology 2021;132:105353. [PMID: 34271522 DOI: 10.1016/j.psyneuen.2021.105353] [Reference Citation Analysis]
85 Kimura R, Kondo D, Takemi S, Fujishiro M, Tsukahara S, Sakai T, Sakata I. The role of central corticotrophin-releasing factor receptor signalling in plasma glucose maintenance through ghrelin secretion in calorie-restricted mice. J Neuroendocrinol 2021;33:e12961. [PMID: 33675127 DOI: 10.1111/jne.12961] [Reference Citation Analysis]
86 Osacka J, Kiss A, Mach M, Tillinger A, Koprdova R. Haloperidol and aripiprazole affects CRH system and behaviour of animals exposed to chronic mild stress. Neurochem Int 2022;152:105224. [PMID: 34798194 DOI: 10.1016/j.neuint.2021.105224] [Reference Citation Analysis]
87 Kovács LÁ, Füredi N, Ujvári B, Golgol A, Gaszner B. Age-Dependent FOSB/ΔFOSB Response to Acute and Chronic Stress in the Extended Amygdala, Hypothalamic Paraventricular, Habenular, Centrally-Projecting Edinger-Westphal, and Dorsal Raphe Nuclei in Male Rats. Front Aging Neurosci 2022;14:862098. [DOI: 10.3389/fnagi.2022.862098] [Reference Citation Analysis]
88 Liu T, Xu Y, Yi CX, Tong Q, Cai D. The hypothalamus for whole-body physiology: from metabolism to aging. Protein Cell 2021. [PMID: 33826123 DOI: 10.1007/s13238-021-00834-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
89 Rieger NS, Varela JA, Ng AJ, Granata L, Djerdjaj A, Brenhouse HC, Christianson JP. Insular cortex corticotropin-releasing factor integrates stress signaling with social affective behavior. Neuropsychopharmacol . [DOI: 10.1038/s41386-022-01292-7] [Reference Citation Analysis]