BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev 2021;101:1633-89. [PMID: 33769100 DOI: 10.1152/physrev.00025.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Ding J, Wang L, Jin Z, Qiang Y, Li W, Wang Y, Zhu C, Jiang S, Xiao L, Hao X, Hu X, Li X, Wang F, Sun T. Do All Roads Lead to Rome? Genes Causing Dravet Syndrome and Dravet Syndrome-Like Phenotypes. Front Neurol 2022;13:832380. [DOI: 10.3389/fneur.2022.832380] [Reference Citation Analysis]
2 Wnek GE, Costa ACS, Kozawa SK. Bio-Mimicking, Electrical Excitability Phenomena Associated With Synthetic Macromolecular Systems: A Brief Review With Connections to the Cytoskeleton and Membraneless Organelles. Front Mol Neurosci 2022;15:830892. [DOI: 10.3389/fnmol.2022.830892] [Reference Citation Analysis]
3 Wang X, Nawaz M, DuPont C, Myers JH, Burke SR, Bannister RA, Foy BD, Voss AA, Rich MM. The role of action potential changes in depolarization-induced failure of excitation contraction coupling in mouse skeletal muscle. Elife 2022;11:e71588. [PMID: 34985413 DOI: 10.7554/eLife.71588] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
4 Beretta S, Gritti L, Ponzoni L, Scalmani P, Mantegazza M, Sala M, Verpelli C, Sala C. Rescuing epileptic and behavioral alterations in a Dravet syndrome mouse model by inhibiting eukaryotic elongation factor 2 kinase (eEF2K). Mol Autism 2022;13:1. [PMID: 34980259 DOI: 10.1186/s13229-021-00484-0] [Reference Citation Analysis]
5 Chen L, Hassani Nia F, Stauber T. Ion Channels and Transporters in Muscle Cell Differentiation. Int J Mol Sci 2021;22:13615. [PMID: 34948411 DOI: 10.3390/ijms222413615] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Eren-Koçak E, Dalkara T. Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Front Pharmacol 2021;12:777607. [PMID: 34858192 DOI: 10.3389/fphar.2021.777607] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Chever O, Zerimech S, Scalmani P, Lemaire L, Pizzamiglio L, Loucif A, Ayrault M, Krupa M, Desroches M, Duprat F, Léna I, Cestèle S, Mantegazza M. Initiation of migraine-related cortical spreading depolarization by hyperactivity of GABAergic neurons and NaV1.1 channels. J Clin Invest 2021;131:e142203. [PMID: 34491914 DOI: 10.1172/JCI142203] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
8 Nicole S, Lory P. New Challenges Resulting From the Loss of Function of Nav1.4 in Neuromuscular Diseases. Front Pharmacol 2021;12:751095. [PMID: 34671263 DOI: 10.3389/fphar.2021.751095] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Lemaire L, Desroches M, Krupa M, Pizzamiglio L, Scalmani P, Mantegazza M. Modeling NaV1.1/SCN1A sodium channel mutations in a microcircuit with realistic ion concentration dynamics suggests differential GABAergic mechanisms leading to hyperexcitability in epilepsy and hemiplegic migraine. PLoS Comput Biol 2021;17:e1009239. [PMID: 34314446 DOI: 10.1371/journal.pcbi.1009239] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
10 Gandolfi D, Boiani GM, Bigiani A, Mapelli J. Modeling Neurotransmission: Computational Tools to Investigate Neurological Disorders. Int J Mol Sci 2021;22:4565. [PMID: 33925434 DOI: 10.3390/ijms22094565] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Cannon SC. Epilepsy channelopathies go neddy: stabilizing NaV1.1 channels by neddylation. J Clin Invest 2021;131:148370. [PMID: 33855971 DOI: 10.1172/JCI148370] [Reference Citation Analysis]