BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Glendinning JI, Stano S, Holter M, Azenkot T, Goldman O, Margolskee RF, Vasselli JR, Sclafani A. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice. Am J Physiol Regul Integr Comp Physiol 2015;309:R552-60. [PMID: 26157055 DOI: 10.1152/ajpregu.00056.2015] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 6.1] [Reference Citation Analysis]
Number Citing Articles
1 Ascencio Gutierrez V, Simental Ramos A, Khayoyan S, Schier LA. Dietary experience with glucose and fructose fosters heightened avidity for glucose-containing sugars independent of TRPM5 taste transduction in mice. Nutritional Neuroscience. [DOI: 10.1080/1028415x.2022.2050092] [Reference Citation Analysis]
2 Sclafani A. From appetite setpoint to appetition: 50years of ingestive behavior research. Physiol Behav 2018;192:210-7. [PMID: 29305256 DOI: 10.1016/j.physbeh.2018.01.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
3 Swithers SE. Not-so-healthy sugar substitutes? Curr Opin Behav Sci 2016;9:106-10. [PMID: 27135048 DOI: 10.1016/j.cobeha.2016.03.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
4 Pullicin AJ, Glendinning JI, Lim J. Cephalic phase insulin release: A review of its mechanistic basis and variability in humans. Physiol Behav 2021;239:113514. [PMID: 34252401 DOI: 10.1016/j.physbeh.2021.113514] [Reference Citation Analysis]
5 O'Brien P, Hewett R, Corpe C. Sugar sensor genes in the murine gastrointestinal tract display a cephalocaudal axis of expression and a diurnal rhythm. Physiol Genomics 2018;50:448-58. [PMID: 29625018 DOI: 10.1152/physiolgenomics.00139.2017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
6 Dhillon J, Lee JY, Mattes RD. The cephalic phase insulin response to nutritive and low-calorie sweeteners in solid and beverage form. Physiol Behav 2017;181:100-9. [PMID: 28899680 DOI: 10.1016/j.physbeh.2017.09.009] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
7 Carreiro AL, Dhillon J, Gordon S, Higgins KA, Jacobs AG, McArthur BM, Redan BW, Rivera RL, Schmidt LR, Mattes RD. The Macronutrients, Appetite, and Energy Intake. Annu Rev Nutr 2016;36:73-103. [PMID: 27431364 DOI: 10.1146/annurev-nutr-121415-112624] [Cited by in Crossref: 52] [Cited by in F6Publishing: 34] [Article Influence: 10.4] [Reference Citation Analysis]
8 Lim J, Pullicin AJ. Oral carbohydrate sensing: Beyond sweet taste. Physiology & Behavior 2019;202:14-25. [DOI: 10.1016/j.physbeh.2019.01.021] [Cited by in Crossref: 19] [Cited by in F6Publishing: 11] [Article Influence: 6.3] [Reference Citation Analysis]
9 Sae Iab T, Dando R. Satiety, Taste and the Cephalic Phase: A Crossover Designed Pilot Study into Taste and Glucose Response. Foods 2020;9:E1578. [PMID: 33143284 DOI: 10.3390/foods9111578] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Elder PJ, Ramsden DB, Burnett D, Weickert MO, Barber TM. Human amylase gene copy number variation as a determinant of metabolic state. Expert Review of Endocrinology & Metabolism 2018;13:193-205. [DOI: 10.1080/17446651.2018.1499466] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
11 Sukumaran SK, Yee KK, Iwata S, Kotha R, Quezada-Calvillo R, Nichols BL, Mohan S, Pinto BM, Shigemura N, Ninomiya Y, Margolskee RF. Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides. Proc Natl Acad Sci U S A 2016;113:6035-40. [PMID: 27162343 DOI: 10.1073/pnas.1520843113] [Cited by in Crossref: 51] [Cited by in F6Publishing: 44] [Article Influence: 8.5] [Reference Citation Analysis]
12 Green BG, Andrew K. Stimulus-Dependent Effects of Temperature on Bitter Taste in Humans. Chem Senses 2017;42:153-60. [PMID: 28119357 DOI: 10.1093/chemse/bjw115] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
13 Sclafani A, Ackroff K. Flavor preferences conditioned by nutritive and non-nutritive sweeteners in mice. Physiol Behav 2017;173:188-99. [PMID: 28192132 DOI: 10.1016/j.physbeh.2017.02.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.4] [Reference Citation Analysis]
14 Aji GK, Warren FJ, Roura E. Salivary α-Amylase Activity and Starch-Related Sweet Taste Perception in Humans. Chem Senses 2019;44:249-56. [PMID: 30753419 DOI: 10.1093/chemse/bjz010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
15 Roura E, Depoortere I, Navarro M. Review: Chemosensing of nutrients and non-nutrients in the human and porcine gastrointestinal tract. Animal 2019;13:2714-26. [DOI: 10.1017/s1751731119001794] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Moriconi E, Feraco A, Marzolla V, Infante M, Lombardo M, Fabbri A, Caprio M. Neuroendocrine and Metabolic Effects of Low-Calorie and Non-Calorie Sweeteners. Front Endocrinol (Lausanne) 2020;11:444. [PMID: 32765425 DOI: 10.3389/fendo.2020.00444] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Roper SD, Chaudhari N. Taste buds: cells, signals and synapses. Nat Rev Neurosci 2017;18:485-97. [PMID: 28655883 DOI: 10.1038/nrn.2017.68] [Cited by in Crossref: 182] [Cited by in F6Publishing: 144] [Article Influence: 36.4] [Reference Citation Analysis]
18 Chern C, Tan SY. Energy Expenditure, Carbohydrate Oxidation and Appetitive Responses to Sucrose or Sucralose in Humans: A Pilot Study. Nutrients 2019;11:E1782. [PMID: 31374985 DOI: 10.3390/nu11081782] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Glendinning JI, Hart S, Lee H, Maleh J, Ortiz G, Ryu YS, Sanchez A, Shelling S, Williams N. Low-calorie sweeteners cause only limited metabolic effects in mice. Am J Physiol Regul Integr Comp Physiol 2020;318:R70-80. [PMID: 31693385 DOI: 10.1152/ajpregu.00245.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
20 Spector AC, Schier LA. Behavioral evidence that select carbohydrate stimuli activate T1R-independent receptor mechanisms. Appetite 2018;122:26-31. [PMID: 28034739 DOI: 10.1016/j.appet.2016.12.031] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
21 Glendinning JI. Oral Post-Oral Actions of Low-Calorie Sweeteners: A Tale of Contradictions and Controversies. Obesity (Silver Spring) 2018;26 Suppl 3:S9-S17. [PMID: 30290077 DOI: 10.1002/oby.22253] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
22 Gutierrez R, Fonseca E, Simon SA. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell Mol Life Sci 2020;77:3469-502. [PMID: 32006052 DOI: 10.1007/s00018-020-03458-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
23 Sclafani A, Vural AS, Ackroff K. CAST/EiJ and C57BL/6J Mice Differ in Their Oral and Postoral Attraction to Glucose and Fructose. Chem Senses 2017;42:259-67. [PMID: 28158517 DOI: 10.1093/chemse/bjx003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
24 Lapis TJ, Penner MH, Lim J. Humans Can Taste Glucose Oligomers Independent of the hT1R2/hT1R3 Sweet Taste Receptor. Chem Senses 2016;41:755-62. [PMID: 27553043 DOI: 10.1093/chemse/bjw088] [Cited by in Crossref: 50] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
25 Peyrot des Gachons C, Breslin PA. Salivary Amylase: Digestion and Metabolic Syndrome. Curr Diab Rep 2016;16:102. [PMID: 27640169 DOI: 10.1007/s11892-016-0794-7] [Cited by in Crossref: 51] [Cited by in F6Publishing: 45] [Article Influence: 10.2] [Reference Citation Analysis]
26 Mattes RD. Low calorie sweeteners: Science and controversy: Conference proceedings. Physiol Behav 2016;164:429-31. [PMID: 26773467 DOI: 10.1016/j.physbeh.2016.01.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
27 Welcome MO, Mastorakis NE. Emerging Concepts in Brain Glucose Metabolic Functions: From Glucose Sensing to How the Sweet Taste of Glucose Regulates Its Own Metabolism in Astrocytes and Neurons. Neuromol Med 2018;20:281-300. [DOI: 10.1007/s12017-018-8503-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
28 Yasumatsu K, Ohkuri T, Yoshida R, Iwata S, Margolskee RF, Ninomiya Y. Sodium-glucose cotransporter 1 as a sugar taste sensor in mouse tongue. Acta Physiol (Oxf) 2020;230:e13529. [PMID: 32599649 DOI: 10.1111/apha.13529] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
29 Dubois GE. Molecular mechanism of sweetness sensation. Physiology & Behavior 2016;164:453-63. [DOI: 10.1016/j.physbeh.2016.03.015] [Cited by in Crossref: 50] [Cited by in F6Publishing: 40] [Article Influence: 8.3] [Reference Citation Analysis]
30 Murovets VO, Lukina EA, Zolotarev VA. The Effect of Tas1r3 Gene Polymorphism on Preference and Consumption of Sucrose and Low-Calorie Sweeteners in Interstrain Hybrid Mice of the First Filial Generation. J Evol Biochem Phys 2018;54:221-33. [DOI: 10.1134/s0022093018030079] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
31 Glendinning JI, Frim YG, Hochman A, Lubitz GS, Basile AJ, Sclafani A. Glucose elicits cephalic-phase insulin release in mice by activating KATP channels in taste cells. Am J Physiol Regul Integr Comp Physiol 2017;312:R597-610. [PMID: 28148491 DOI: 10.1152/ajpregu.00433.2016] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
32 Spierling SR, Kreisler AD, Williams CA, Fang SY, Pucci SN, Kines KT, Zorrilla EP. Intermittent, extended access to preferred food leads to escalated food reinforcement and cyclic whole-body metabolism in rats: Sex differences and individual vulnerability. Physiol Behav 2018;192:3-16. [PMID: 29654812 DOI: 10.1016/j.physbeh.2018.04.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
33 Kalyanasundar B, Blonde GD, Spector AC, Travers SP. Electrophysiological responses to sugars and amino acids in the nucleus of the solitary tract of type 1 taste receptor double-knockout mice. J Neurophysiol 2020;123:843-59. [PMID: 31913749 DOI: 10.1152/jn.00584.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
34 Schier LA, Inui-Yamamoto C, Blonde GD, Spector AC. T1R2+T1R3-independent chemosensory inputs contributing to behavioral discrimination of sugars in mice. Am J Physiol Regul Integr Comp Physiol 2019;316:R448-62. [PMID: 30624973 DOI: 10.1152/ajpregu.00255.2018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
35 Kummer W, Deckmann K. Brush cells, the newly identified gatekeepers of the urinary tract. Current Opinion in Urology 2017;27:85-92. [DOI: 10.1097/mou.0000000000000361] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 3.4] [Reference Citation Analysis]
36 Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019;99:605-63. [PMID: 30475657 DOI: 10.1152/physrev.00044.2017] [Cited by in Crossref: 28] [Cited by in F6Publishing: 22] [Article Influence: 9.3] [Reference Citation Analysis]
37 Sclafani A, Zukerman S, Ackroff K. Residual Glucose Taste in T1R3 Knockout but not TRPM5 Knockout Mice. Physiol Behav 2020;222:112945. [PMID: 32417232 DOI: 10.1016/j.physbeh.2020.112945] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
38 Pullicin AJ, Penner MH, Lim J. Human taste detection of glucose oligomers with low degree of polymerization. PLoS One 2017;12:e0183008. [PMID: 28850567 DOI: 10.1371/journal.pone.0183008] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 3.2] [Reference Citation Analysis]
39 Yamamoto T, Mizuta H, Ueji K. Analysis of facial expressions in response to basic taste stimuli using artificial intelligence to predict perceived hedonic ratings. PLoS One 2021;16:e0250928. [PMID: 33945568 DOI: 10.1371/journal.pone.0250928] [Reference Citation Analysis]
40 Yoshida R, Yasumatsu K, Ninomiya Y. The sweet taste receptor, glucose transporters, and the ATP-sensitive K+ (KATP) channel: sugar sensing for the regulation of energy homeostasis. Current Opinion in Physiology 2021;20:57-63. [DOI: 10.1016/j.cophys.2021.01.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
41 von Molitor E, Riedel K, Krohn M, Hafner M, Rudolf R, Cesetti T. Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Front Hum Neurosci 2021;15:667709. [PMID: 34239428 DOI: 10.3389/fnhum.2021.667709] [Reference Citation Analysis]
42 Hsiao YH, Hsu CH, Chen C. A High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing. Molecules. 2016;21:896. [PMID: 27399663 DOI: 10.3390/molecules21070896] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
43 Murovets VO, Lukina EA, Sozontov EA, Andreeva JV, Khropycheva RP, Zolotarev VA. Allelic variation of the Tas1r3 taste receptor gene affects sweet taste responsiveness and metabolism of glucose in F1 mouse hybrids. PLoS One 2020;15:e0235913. [PMID: 32673349 DOI: 10.1371/journal.pone.0235913] [Reference Citation Analysis]
44 Gutierrez R, Fonseca E, Simon SA. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell Mol Life Sci 2020;77:3469-502. [PMID: 32006052 DOI: 10.1007/s00018-020-03458-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 1] [Article Influence: 11.0] [Reference Citation Analysis]
45 Schier LA, Spector AC. Behavioral Evidence for More than One Taste Signaling Pathway for Sugars in Rats. J Neurosci 2016;36:113-24. [PMID: 26740654 DOI: 10.1523/JNEUROSCI.3356-15.2016] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
46 Wiedemann SJ, Rachid L, Illigens B, Böni-schnetzler M, Donath MY. Evidence for cephalic phase insulin release in humans: A systematic review and meta-analysis. Appetite 2020;155:104792. [DOI: 10.1016/j.appet.2020.104792] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Breslin PAS, Izumi A, Tharp A, Ohkuri T, Yokoo Y, Flammer LJ, Rawson NE, Margolskee RF. Evidence that human oral glucose detection involves a sweet taste pathway and a glucose transporter pathway. PLoS One 2021;16:e0256989. [PMID: 34614010 DOI: 10.1371/journal.pone.0256989] [Reference Citation Analysis]