BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dergacheva O, Yamanaka A, Schwartz AR, Polotsky VY, Mendelowitz D. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons. Am J Physiol Heart Circ Physiol 2017;312:H808-17. [PMID: 28159808 DOI: 10.1152/ajpheart.00572.2016] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
Number Citing Articles
1 Dergacheva O, Mendelowitz D. Combined hypoxia and hypercapnia, but not hypoxia alone, suppresses neurotransmission from orexin to hypothalamic paraventricular spinally-projecting neurons in weanling rats. Brain Res 2018;1679:33-8. [PMID: 29162453 DOI: 10.1016/j.brainres.2017.11.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
2 Lindsey ML, Gray GA, Wood SK, Curran-Everett D. Statistical considerations in reporting cardiovascular research. Am J Physiol Heart Circ Physiol 2018;315:H303-13. [PMID: 30028200 DOI: 10.1152/ajpheart.00309.2018] [Cited by in Crossref: 43] [Cited by in F6Publishing: 45] [Article Influence: 10.8] [Reference Citation Analysis]
3 Li J, Li H, Wang D, Guo Y, Zhang X, Ran M, Yang C, Yang Q, Dong H. Orexin activated emergence from isoflurane anaesthesia involves excitation of ventral tegmental area dopaminergic neurones in rats. British Journal of Anaesthesia 2019;123:497-505. [DOI: 10.1016/j.bja.2019.07.005] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
4 Amodeo LR, Liu W, Wills DN, Vetreno RP, Crews FT, Ehlers CL. Adolescent alcohol exposure increases orexin-A/hypocretin-1 in the anterior hypothalamus. Alcohol 2020;88:65-72. [PMID: 32619610 DOI: 10.1016/j.alcohol.2020.06.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Jiang Z, Rajamanickam S, Justice NJ. Local Corticotropin-Releasing Factor Signaling in the Hypothalamic Paraventricular Nucleus. J Neurosci 2018;38:1874-90. [PMID: 29352046 DOI: 10.1523/JNEUROSCI.1492-17.2017] [Cited by in Crossref: 43] [Cited by in F6Publishing: 26] [Article Influence: 10.8] [Reference Citation Analysis]
6 Szabadi E. Functional Organization of the Sympathetic Pathways Controlling the Pupil: Light-Inhibited and Light-Stimulated Pathways. Front Neurol 2018;9:1069. [PMID: 30619035 DOI: 10.3389/fneur.2018.01069] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
7 Chen Y, Pais-Roldan P, Chen X, Frosz MH, Yu X. MRI-guided robotic arm drives optogenetic fMRI with concurrent Ca2+ recording. Nat Commun 2019;10:2536. [PMID: 31182714 DOI: 10.1038/s41467-019-10450-3] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
8 Berteotti C, Silvani A. The link between narcolepsy and autonomic cardiovascular dysfunction: a translational perspective. Clin Auton Res 2018;28:545-55. [DOI: 10.1007/s10286-017-0473-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 4.2] [Reference Citation Analysis]
9 Ferrari LL, Park D, Zhu L, Palmer MR, Broadhurst RY, Arrigoni E. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018;38:1588-99. [PMID: 29311142 DOI: 10.1523/JNEUROSCI.1925-17.2017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 5.8] [Reference Citation Analysis]
10 Liu JJ, Mirabella VR, Pang ZP. Cell type- and pathway-specific synaptic regulation of orexin neurocircuitry. Brain Res 2020;1731:145974. [PMID: 30296428 DOI: 10.1016/j.brainres.2018.10.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
11 Li SB, de Lecea L. The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 2020;167:107993. [PMID: 32135427 DOI: 10.1016/j.neuropharm.2020.107993] [Cited by in Crossref: 29] [Cited by in F6Publishing: 25] [Article Influence: 14.5] [Reference Citation Analysis]
12 Mukerjee S, Lazartigues E. Sympathetic nerve activity and neuro-inflammation: Who is in the driver's seat? Acta Physiol (Oxf) 2018;222. [PMID: 29210184 DOI: 10.1111/apha.13011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
13 Masís-Vargas A, Ritsema WIGR, Mendoza J, Kalsbeek A. Metabolic Effects of Light at Night are Time- and Wavelength-Dependent in Rats. Obesity (Silver Spring) 2020;28 Suppl 1:S114-25. [PMID: 32700824 DOI: 10.1002/oby.22874] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Gao HR, Wu ZJ, Wu SB, Gao HY, Wang J, Zhang JL, Zhou MQ. Roles of central orexinergic system on cardiovascular function and acupuncture on intervention of cardiovascular risk: Orexinergic system mediate the role of acupuncture? Neuropeptides 2021;87:102132. [PMID: 33636511 DOI: 10.1016/j.npep.2021.102132] [Reference Citation Analysis]
15 Bastianini S, Silvani A. Clinical implications of basic research: The role of hypocretin/orexin neurons in the central autonomic network. Clinical and Translational Neuroscience 2018;2:2514183X1878932. [DOI: 10.1177/2514183x18789327] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]