BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Silvani A, Dampney RA. Central control of cardiovascular function during sleep. Am J Physiol Heart Circ Physiol 2013;305:H1683-92. [PMID: 24097430 DOI: 10.1152/ajpheart.00554.2013] [Cited by in Crossref: 64] [Cited by in F6Publishing: 58] [Article Influence: 7.1] [Reference Citation Analysis]
Number Citing Articles
1 De Fazio R, Mattei V, Al-naami B, De Vittorio M, Visconti P. Methodologies and Wearable Devices to Monitor Biophysical Parameters Related to Sleep Dysfunctions: An Overview. Micromachines 2022;13:1335. [DOI: 10.3390/mi13081335] [Reference Citation Analysis]
2 Mateos-Salgado EL, Ayala-Guerrero F, Gutiérrez-Chávez CA. Evaluation of the Heart Rhythm Coherence Ratio During Sleep: A Pilot Study With Polysomnography. Appl Psychophysiol Biofeedback 2022. [PMID: 35503195 DOI: 10.1007/s10484-022-09542-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Anusha A, Preejith S, Akl TJ, Sivaprakasam M. Electrodermal activity based autonomic sleep staging using wrist wearable. Biomedical Signal Processing and Control 2022;75:103562. [DOI: 10.1016/j.bspc.2022.103562] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Hartmann S, Ferri R, Bruni O, Baumert M. Causality of cortical and cardiovascular activity during cyclic alternating pattern in non-rapid eye movement sleep. Philos Trans A Math Phys Eng Sci 2021;379:20200248. [PMID: 34689628 DOI: 10.1098/rsta.2020.0248] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Nardelli M, Catrambone V, Grandi G, Banfi T, Bruno RM, Scilingo EP, Faraguna U, Valenza G. Activation of brain-heart axis during REM sleep: a trigger for dreaming. Am J Physiol Regul Integr Comp Physiol 2021. [PMID: 34704848 DOI: 10.1152/ajpregu.00306.2020] [Reference Citation Analysis]
6 Alvente S, Berteotti C, Bastianini S, Lo Martire V, Matteoli G, Silvani A, Zoccoli G. Autonomic mechanisms of blood pressure alterations during sleep in orexin/hypocretin-deficient narcoleptic mice. Sleep 2021;44:zsab022. [PMID: 33517440 DOI: 10.1093/sleep/zsab022] [Reference Citation Analysis]
7 Hajduczok AG, DiJoseph KM, Bent B, Thorp AK, Mullholand JB, MacKay SA, Barik S, Coleman JJ, Paules CI, Tinsley A. Physiologic Response to the Pfizer-BioNTech COVID-19 Vaccine Measured Using Wearable Devices: Prospective Observational Study. JMIR Form Res 2021;5:e28568. [PMID: 34236995 DOI: 10.2196/28568] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
8 Wang Q, Wang X, Yang C, Wang L. The role of sleep disorders in cardiovascular diseases: Culprit or accomplice? Life Sci 2021;283:119851. [PMID: 34324916 DOI: 10.1016/j.lfs.2021.119851] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Korostovtseva L, Bochkarev M, Sviryaev Y. Sleep and Cardiovascular Risk. Sleep Med Clin 2021;16:485-97. [PMID: 34325825 DOI: 10.1016/j.jsmc.2021.05.001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Pansani AP, Schoorlemmer GH, Ferreira CB, Rossi MV, Angheben JMM, Ghazale PP, Gomes KP, Cravo SL. Chronic apnea during REM sleep increases arterial pressure and sympathetic modulation in rats. Sleep 2021;44:zsaa249. [PMID: 33231257 DOI: 10.1093/sleep/zsaa249] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Ferri R, Silvani A, Mogavero MP, Rundo F, Bruni O, Picchietti DL, DelRosso LM. Heart rate changes associated with the different types of leg movements during sleep in children, adolescents and adults with restless legs syndrome. J Sleep Res 2021;:e13379. [PMID: 33960046 DOI: 10.1111/jsr.13379] [Reference Citation Analysis]
12 Maiolino G, Bisogni V, Soranna D, Pengo MF, Pucci G, Vettor R, Fava C, Colussi GL, Bilo G, Lombardi C, Parati G, Rossi GP, Silvani A; Sleep Disorders Working Group of the Italian Society of Hypertension. Effects of insomnia and restless legs syndrome on sleep arterial blood pressure: A systematic review and meta-analysis. Sleep Med Rev 2021;59:101497. [PMID: 34044356 DOI: 10.1016/j.smrv.2021.101497] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
13 Cerri M, Amici R. Thermoregulation and Sleep: Functional Interaction and Central Nervous Control. Compr Physiol 2021;11:1591-604. [PMID: 33792906 DOI: 10.1002/cphy.c140012] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Fink AM, Burke LA, Sharma K. Lesioning of the pedunculopontine nucleus reduces rapid eye movement sleep, but does not alter cardiorespiratory activities during sleep, under hypoxic conditions in rats. Respir Physiol Neurobiol 2021;288:103653. [PMID: 33716095 DOI: 10.1016/j.resp.2021.103653] [Reference Citation Analysis]
15 Mateos-salgado EL, Ayala-guerrero F. Comparison of autonomic activity between N2 and N3 stages of NREM sleep: evaluation through heart rate variability metrics. Sleep Biol Rhythms 2021;19:181-6. [DOI: 10.1007/s41105-020-00305-6] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 AlQatari AA, Alturki JA, Abdulali KA, Alhumud DA, Alibrahim MA, Alarab YA, Salem AM, Yar T, Alqurashi YD, Alsunni AA, Al Humoud S. Changes in Heart Rate Variability and Baroreflex Sensitivity During Daytime Naps. Nat Sci Sleep 2020;12:661-9. [PMID: 33061723 DOI: 10.2147/NSS.S270191] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Magnusson JL, Emter CA, Cummings KJ. Sex- and age-based differences in the effect of central serotonin on arterial blood pressure regulation. J Appl Physiol (1985) 2020;129:1310-23. [PMID: 32909922 DOI: 10.1152/japplphysiol.00414.2020] [Reference Citation Analysis]
18 Sayk F, Twesten C, Adametz I, Franzen K, Vonthein R, Dodt C, Meusel M. Angiotensin II-mediated nondipping during sleep in healthy humans: effects on baroreflex function at subsequent daytime. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2020;318:R813-21. [DOI: 10.1152/ajpregu.00355.2019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Staats R, Barros I, Fernandes D, Grencho D, Reis C, Matos F, Valença J, Marôco J, de Almeida AB, Bárbara C. The Importance of Sleep Fragmentation on the Hemodynamic Dipping in Obstructive Sleep Apnea Patients. Front Physiol 2020;11:104. [PMID: 32231580 DOI: 10.3389/fphys.2020.00104] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Forouzanfar M, Baker FC, Colrain IM, de Zambotti M. Electroencephalographic Slow-Wave Activity During Sleep in Different Phases of Blood Pressure and Respiration Oscillations. Annu Int Conf IEEE Eng Med Biol Soc 2019;2019:2564-7. [PMID: 31946420 DOI: 10.1109/EMBC.2019.8857490] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Zhong P, Zhang Z, Barger Z, Ma C, Liu D, Ding X, Dan Y. Control of Non-REM Sleep by Midbrain Neurotensinergic Neurons. Neuron 2019;104:795-809.e6. [PMID: 31582313 DOI: 10.1016/j.neuron.2019.08.026] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
22 Mansukhani MP, Covassin N, Somers VK. Neurological Sleep Disorders and Blood Pressure: Current Evidence. Hypertension 2019;74:726-32. [PMID: 31476906 DOI: 10.1161/HYPERTENSIONAHA.119.13456] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
23 Ma C, Zhong P, Liu D, Barger ZK, Zhou L, Chang WC, Kim B, Dan Y. Sleep Regulation by Neurotensinergic Neurons in a Thalamo-Amygdala Circuit. Neuron 2019;103:323-334.e7. [PMID: 31178114 DOI: 10.1016/j.neuron.2019.05.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
24 Silvani A. Sleep disorders, nocturnal blood pressure, and cardiovascular risk: A translational perspective. Autonomic Neuroscience 2019;218:31-42. [DOI: 10.1016/j.autneu.2019.02.006] [Cited by in Crossref: 25] [Cited by in F6Publishing: 24] [Article Influence: 8.3] [Reference Citation Analysis]
25 Benarroch EE. Control of the cardiovascular and respiratory systems during sleep. Autonomic Neuroscience 2019;218:54-63. [DOI: 10.1016/j.autneu.2019.01.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
26 Silvani A, Cerri M, Zoccoli G, Swoap SJ. Is Adenosine Action Common Ground for NREM Sleep, Torpor, and Other Hypometabolic States? Physiology (Bethesda) 2018;33:182-96. [PMID: 29616880 DOI: 10.1152/physiol.00007.2018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
27 Besnard S, Tighilet B, Chabbert C, Hitier M, Toulouse J, Le Gall A, Machado M, Smith PF. The balance of sleep: Role of the vestibular sensory system. Sleep Medicine Reviews 2018;42:220-8. [DOI: 10.1016/j.smrv.2018.09.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
28 Chen H, Lv K, Ji G, Liu Z, Guo J, Wan Y, Wang L, Li Z, Li Y, Qu L. Characterization of sleep-wake patterns in crew members under a short-duration spaceflight. Biological Rhythm Research 2020;51:392-407. [DOI: 10.1080/09291016.2018.1533730] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
29 Benarroch EE. Brainstem integration of arousal, sleep, cardiovascular, and respiratory control. Neurology 2018;91:958-66. [PMID: 30355703 DOI: 10.1212/WNL.0000000000006537] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 5.5] [Reference Citation Analysis]
30 Fink AM, Bronas UG, Calik MW. Autonomic regulation during sleep and wakefulness: a review with implications for defining the pathophysiology of neurological disorders. Clin Auton Res 2018;28:509-18. [PMID: 30155794 DOI: 10.1007/s10286-018-0560-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 5.3] [Reference Citation Analysis]
31 Bastianini S, Silvani A. Clinical implications of basic research: The role of hypocretin/orexin neurons in the central autonomic network. Clinical and Translational Neuroscience 2018;2:2514183X1878932. [DOI: 10.1177/2514183x18789327] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
32 Kommajosyula SP, Tupal S, Faingold CL. Deficient post-ictal cardiorespiratory compensatory mechanisms mediated by the periaqueductal gray may lead to death in a mouse model of SUDEP. Epilepsy Res 2018;147:1-8. [PMID: 30165263 DOI: 10.1016/j.eplepsyres.2018.08.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
33 Yang YN, Liu YP, Hsieh MT, Lin YC, Tung CS. Effects of prolonged paradoxical sleep deprivation with or without acute cold stress on hemodynamic perturbations in rats. Stress 2018;21:520-7. [PMID: 29939104 DOI: 10.1080/10253890.2018.1483328] [Reference Citation Analysis]
34 Liguori G, Tafuri S, Miyoshi C, Yanagisawa M, Squillacioti C, De Pasquale V, Mirabella N, Vittoria A, Costagliola A. Localization of orexin B and orexin-2 receptor in the rat epididymis. Acta Histochem 2018;120:292-7. [PMID: 29496265 DOI: 10.1016/j.acthis.2018.02.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
35 de Zambotti M, Trinder J, Silvani A, Colrain IM, Baker FC. Dynamic coupling between the central and autonomic nervous systems during sleep: A review. Neurosci Biobehav Rev 2018;90:84-103. [PMID: 29608990 DOI: 10.1016/j.neubiorev.2018.03.027] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 14.8] [Reference Citation Analysis]
36 Rundfeldt LC, Maggioni MA, Coker RH, Gunga HC, Riveros-Rivera A, Schalt A, Steinach M. Cardiac Autonomic Modulations and Psychological Correlates in the Yukon Arctic Ultra: The Longest and the Coldest Ultramarathon. Front Physiol 2018;9:35. [PMID: 29483874 DOI: 10.3389/fphys.2018.00035] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
37 Hashimoto M, Yamanaka A, Kato S, Tanifuji M, Kobayashi K, Yaginuma H. Anatomical Evidence for a Direct Projection from Purkinje Cells in the Mouse Cerebellar Vermis to Medial Parabrachial Nucleus. Front Neural Circuits 2018;12:6. [PMID: 29467628 DOI: 10.3389/fncir.2018.00006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
38 Izzi F, Placidi F, Liguori C, Lauretti B, Marfia GA, Pisani A, Mercuri NB, Rocchi C. Does continuous positive airway pressure treatment affect autonomic nervous system in patients with severe obstructive sleep apnea? Sleep Medicine 2018;42:68-72. [DOI: 10.1016/j.sleep.2017.09.029] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
39 Lo Martire V, Silvani A, Alvente S, Bastianini S, Berteotti C, Valli A, Zoccoli G. Modulation of sympathetic vasoconstriction is critical for the effects of sleep on arterial pressure in mice. J Physiol 2018;596:591-608. [PMID: 29266348 DOI: 10.1113/JP275353] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
40 Herzig D, Eser P, Omlin X, Riener R, Wilhelm M, Achermann P. Reproducibility of Heart Rate Variability Is Parameter and Sleep Stage Dependent. Front Physiol 2017;8:1100. [PMID: 29367845 DOI: 10.3389/fphys.2017.01100] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 4.5] [Reference Citation Analysis]
41 Sieminski M, Chwojnicki K, Sarkanen T, Partinen M. The relationship between orexin levels and blood pressure changes in patients with narcolepsy. PLoS One 2017;12:e0185975. [PMID: 29023559 DOI: 10.1371/journal.pone.0185975] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
42 Berteotti C, Silvani A. The link between narcolepsy and autonomic cardiovascular dysfunction: a translational perspective. Clin Auton Res 2018;28:545-55. [DOI: 10.1007/s10286-017-0473-z] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
43 Dampney RAL. Resetting of the Baroreflex Control of Sympathetic Vasomotor Activity during Natural Behaviors: Description and Conceptual Model of Central Mechanisms. Front Neurosci 2017;11:461. [PMID: 28860965 DOI: 10.3389/fnins.2017.00461] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 5.4] [Reference Citation Analysis]
44 Türoff A, Thiem U, Fox H, Spießhöfer J, Bitter T, Tamisier R, Punjabi NM, Horstkotte D, Oldenburg O. Sleep duration and quality in heart failure patients. Sleep Breath 2017;21:919-27. [PMID: 28389910 DOI: 10.1007/s11325-017-1501-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
45 Silvani A. Orexins and the cardiovascular events of awakening. Temperature (Austin) 2017;4:128-40. [PMID: 28680929 DOI: 10.1080/23328940.2017.1295128] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
46 Lecci S, Fernandez LM, Weber FD, Cardis R, Chatton JY, Born J, Lüthi A. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci Adv 2017;3:e1602026. [PMID: 28246641 DOI: 10.1126/sciadv.1602026] [Cited by in Crossref: 59] [Cited by in F6Publishing: 68] [Article Influence: 11.8] [Reference Citation Analysis]
47 Huang Y, Cui S, Cui X, Cao Q, Ding H, Song J, Hu X, Ye H, Yu B, Sheng Z, Wang Z, Zhang Y. Tetrandrine, an alkaloid from S. tetrandra exhibits anti-hypertensive and sleep-enhancing effects in SHR via different mechanisms. Phytomedicine 2016;23:1821-9. [DOI: 10.1016/j.phymed.2016.10.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 2.2] [Reference Citation Analysis]
48 Silvani A, Calandra-buonaura G, Dampney RAL, Cortelli P. Brain–heart interactions: physiology and clinical implications. Phil Trans R Soc A 2016;374:20150181. [DOI: 10.1098/rsta.2015.0181] [Cited by in Crossref: 68] [Cited by in F6Publishing: 72] [Article Influence: 11.3] [Reference Citation Analysis]
49 Calandra-buonaura G, Provini F, Guaraldi P, Plazzi G, Cortelli P. Cardiovascular autonomic dysfunctions and sleep disorders. Sleep Medicine Reviews 2016;26:43-56. [DOI: 10.1016/j.smrv.2015.05.005] [Cited by in Crossref: 64] [Cited by in F6Publishing: 52] [Article Influence: 10.7] [Reference Citation Analysis]
50 Joustra SD, Reijntjes RH, Pereira AM, Lammers GJ, Biermasz NR, Thijs RD. The Role of the Suprachiasmatic Nucleus in Cardiac Autonomic Control during Sleep. PLoS One 2016;11:e0152390. [PMID: 27010631 DOI: 10.1371/journal.pone.0152390] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
51 Bastianini S, Silvani A, Berteotti C, Lo Martire V, Cohen G, Ohtsu H, Lin JS, Zoccoli G. Histamine Transmission Modulates the Phenotype of Murine Narcolepsy Caused by Orexin Neuron Deficiency. PLoS One 2015;10:e0140520. [PMID: 26474479 DOI: 10.1371/journal.pone.0140520] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
52 Kato T, Masuda Y, Miyano K, Higashiyama M, Yano H, Haque T, Sato F, Yoshida A. Distinct association between the antagonistic jaw muscle activity levels and cardiac activity during chewing and NREM sleep in the freely moving guinea pigs. Neurosci Lett 2015;592:59-63. [PMID: 25748316 DOI: 10.1016/j.neulet.2015.03.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
53 Niemeijer ND, Corssmit EP, Reijntjes RH, Lammers GJ, van Dijk JG, Thijs RD. Sleep-mediated heart rate variability after bilateral carotid body tumor resection. Sleep 2015;38:633-9. [PMID: 25325476 DOI: 10.5665/sleep.4586] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.9] [Reference Citation Analysis]
54 Zhang L, Hou Y, Po SS. Obstructive Sleep Apnoea and Atrial Fibrillation. Arrhythm Electrophysiol Rev. 2015;4:14-18. [PMID: 26835094 DOI: 10.15420/aer.2015.4.1.14] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
55 Silvani A, Calandra-buonaura G, Benarroch EE, Dampney RA, Cortelli P. Bidirectional interactions between the baroreceptor reflex and arousal: an update. Sleep Medicine 2015;16:210-6. [DOI: 10.1016/j.sleep.2014.10.011] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 5.6] [Reference Citation Analysis]
56 Gao M, Zhang L, Scherlag BJ, Huang B, Stavrakis S, Hou YM, Hou Y, Po SS. Low-level vagosympathetic trunk stimulation inhibits atrial fibrillation in a rabbit model of obstructive sleep apnea. Heart Rhythm 2015;12:818-24. [PMID: 25533582 DOI: 10.1016/j.hrthm.2014.12.024] [Cited by in Crossref: 19] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
57 Mesarwi OA, Sharma EV, Jun JC, Polotsky VY. Metabolic dysfunction in obstructive sleep apnea: A critical examination of underlying mechanisms. Sleep Biol Rhythms 2015;13:2-17. [PMID: 26412981 DOI: 10.1111/sbr.12078] [Cited by in Crossref: 36] [Cited by in F6Publishing: 41] [Article Influence: 4.5] [Reference Citation Analysis]
58 Silvani A, Berteotti C, Bastianini S, Cohen G, Lo Martire V, Mazza R, Pagotto U, Quarta C, Zoccoli G. Cardiorespiratory anomalies in mice lacking CB1 cannabinoid receptors. PLoS One 2014;9:e100536. [PMID: 24950219 DOI: 10.1371/journal.pone.0100536] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 2.6] [Reference Citation Analysis]