BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Delvalle NM, Fried DE, Rivera-Lopez G, Gaudette L, Gulbransen BD. Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility. Am J Physiol Gastrointest Liver Physiol. 2018;315:G473-G483. [PMID: 29927320 DOI: 10.1152/ajpgi.00155.2018] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 2020;77:4505-22. [PMID: 32424438 DOI: 10.1007/s00018-020-03543-6] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 14.5] [Reference Citation Analysis]
2 Ahmadzai MM, McClain JL, Dharshika C, Seguella L, Giancola F, De Giorgio R, Gulbransen BD. LPAR1 regulates enteric nervous system function through glial signaling and contributes to chronic intestinal pseudo-obstruction. J Clin Invest 2022;132:e149464. [PMID: 35166239 DOI: 10.1172/JCI149464] [Reference Citation Analysis]
3 Wang YM, Jia YT, Li ZX. Role of enteric glial cells in intestinal function and intestinal diseases. Shijie Huaren Xiaohua Zazhi 2020; 28(19): 979-985 [DOI: 10.11569/wcjd.v28.i19.979] [Reference Citation Analysis]
4 Seguella L, Gulbransen BD. Enteric glial biology, intercellular signalling and roles in gastrointestinal disease. Nat Rev Gastroenterol Hepatol 2021;18:571-87. [PMID: 33731961 DOI: 10.1038/s41575-021-00423-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Schledwitz A, Sundel MH, Alizadeh M, Hu S, Xie G, Raufman JP. Differential Actions of Muscarinic Receptor Subtypes in Gastric, Pancreatic, and Colon Cancer. Int J Mol Sci 2021;22:13153. [PMID: 34884958 DOI: 10.3390/ijms222313153] [Reference Citation Analysis]
6 Bohnen NI, Yarnall AJ, Weil RS, Moro E, Moehle MS, Borghammer P, Bedard M, Albin RL. Cholinergic system changes in Parkinson's disease: emerging therapeutic approaches. The Lancet Neurology 2022. [DOI: 10.1016/s1474-4422(21)00377-x] [Reference Citation Analysis]
7 Cerantola S, Faggin S, Annaloro G, Mainente F, Filippini R, Savarino EV, Piovan A, Zoccatelli G, Giron MC. Influence of Tilia tomentosa Moench Extract on Mouse Small Intestine Neuromuscular Contractility. Nutrients 2021;13:3505. [PMID: 34684506 DOI: 10.3390/nu13103505] [Reference Citation Analysis]
8 Gonkowski S, Gajęcka M, Makowska K. Mycotoxins and the Enteric Nervous System. Toxins (Basel) 2020;12:E461. [PMID: 32707706 DOI: 10.3390/toxins12070461] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Pellegrini C, D'Antongiovanni V, Ippolito C, Segnani C, Antonioli L, Fornai M, Bernardini N. From the intestinal mucosal barrier to the enteric neuromuscular compartment: an integrated overview on the morphological changes in Parkinson's disease. Eur J Histochem 2021;65. [PMID: 34802221 DOI: 10.4081/ejh.2021.3278] [Reference Citation Analysis]
10 Trevizan AR, Schneider LCL, Araújo EJA, Garcia JL, Buttow NC, Nogueira-Melo GA, Sant'Ana DMG. Acute Toxoplasma gondii infection alters the number of neurons and the proportion of enteric glial cells in the duodenum in Wistar rats. Neurogastroenterol Motil 2019;31:e13523. [PMID: 30537037 DOI: 10.1111/nmo.13523] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
11 Johnson AC, Louwies T, Ligon CO, Greenwood-Van Meerveld B. Enlightening the frontiers of neurogastroenterology through optogenetics. Am J Physiol Gastrointest Liver Physiol 2020;319:G391-9. [PMID: 32755304 DOI: 10.1152/ajpgi.00384.2019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Koh SD, Drumm BT, Lu H, Kim HJ, Ryoo SB, Kim HU, Lee JY, Rhee PL, Wang Q, Gould TW, Heredia D, Perrino BA, Hwang SJ, Ward SM, Sanders KM. Propulsive colonic contractions are mediated by inhibition-driven poststimulus responses that originate in interstitial cells of Cajal. Proc Natl Acad Sci U S A 2022;119:e2123020119. [PMID: 35446689 DOI: 10.1073/pnas.2123020119] [Reference Citation Analysis]
13 Rosenberg HJ, Rao M. Enteric glia in homeostasis and disease: From fundamental biology to human pathology. iScience 2021;24:102863. [PMID: 34401661 DOI: 10.1016/j.isci.2021.102863] [Reference Citation Analysis]
14 Almeida PP, Thomasi BBM, Costa NDS, Valdetaro L, Pereira AD, Gomes ALT, Stockler-Pinto MB. Brazil Nut (Bertholletia excelsa H.B.K) Retards Gastric Emptying and Modulates Enteric Glial Cells in a Dose-Dependent Manner. J Am Coll Nutr 2020;:1-9. [PMID: 33301378 DOI: 10.1080/07315724.2020.1852981] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
15 Nguyen VTT, Sallbach J, Dos Santos Guilherme M, Endres K. Influence of Acetylcholine Esterase Inhibitors and Memantine, Clinically Approved for Alzheimer's Dementia Treatment, on Intestinal Properties of the Mouse. Int J Mol Sci 2021;22:1015. [PMID: 33498392 DOI: 10.3390/ijms22031015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Grundmann D, Loris E, Maas-Omlor S, Huang W, Scheller A, Kirchhoff F, Schäfer KH. Enteric Glia: S100, GFAP, and Beyond. Anat Rec (Hoboken) 2019;302:1333-44. [PMID: 30951262 DOI: 10.1002/ar.24128] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 4.7] [Reference Citation Analysis]
17 Ahmadzai MM, Seguella L, Gulbransen BD. Circuit-specific enteric glia regulate intestinal motor neurocircuits. Proc Natl Acad Sci U S A 2021;118:e2025938118. [PMID: 34593632 DOI: 10.1073/pnas.2025938118] [Reference Citation Analysis]
18 Lucas TA, Zhu L, Buckwalter MS. Spleen glia are a transcriptionally unique glial subtype interposed between immune cells and sympathetic axons. Glia 2021;69:1799-815. [DOI: 10.1002/glia.23993] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Hernandez S, Fried DE, Grubišić V, McClain JL, Gulbransen BD. Gastrointestinal neuroimmune disruption in a mouse model of Gulf War illness. FASEB J 2019;33:6168-84. [PMID: 30789759 DOI: 10.1096/fj.201802572R] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
20 Stoye NM, Dos Santos Guilherme M, Endres K. Alzheimer's disease in the gut-Major changes in the gut of 5xFAD model mice with ApoA1 as potential key player. FASEB J 2020;34:11883-99. [PMID: 32681583 DOI: 10.1096/fj.201903128RR] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
21 Enes J, Haburčák M, Sona S, Gerard N, Mitchell AC, Fu W, Birren SJ. Satellite glial cells modulate cholinergic transmission between sympathetic neurons. PLoS One 2020;15:e0218643. [PMID: 32017764 DOI: 10.1371/journal.pone.0218643] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
22 Yu Z. Neuromechanism of acupuncture regulating gastrointestinal motility. World J Gastroenterol 2020; 26(23): 3182-3200 [PMID: 32684734 DOI: 10.3748/wjg.v26.i23.3182] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
23 Reale O, Huguet A, Fessard V. Novel Insights on the Toxicity of Phycotoxins on the Gut through the Targeting of Enteric Glial Cells. Mar Drugs 2019;17:E429. [PMID: 31340532 DOI: 10.3390/md17070429] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
24 D’Antongiovanni V, Pellegrini C, Fornai M, Colucci R, Blandizzi C, Antonioli L, Bernardini N. Intestinal epithelial barrier and neuromuscular compartment in health and disease. World J Gastroenterol 2020; 26(14): 1564-1579 [PMID: 32327906 DOI: 10.3748/wjg.v26.i14.1564] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
25 Almeida PP, de Moraes Thomasi BB, Menezes ÁC, Da Cruz BO, da Silva Costa N, Brito ML, D'Avila Pereira A, Castañon CR, Degani VAN, Magliano DC, Knauf C, Tavares-Gomes AL, Stockler-Pinto MB. 5/6 nephrectomy affects enteric glial cells and promotes impaired antioxidant defense in the colonic neuromuscular layer. Life Sci 2022;:120494. [PMID: 35339510 DOI: 10.1016/j.lfs.2022.120494] [Reference Citation Analysis]
26 Cerantola S, Caputi V, Marsilio I, Ridolfi M, Faggin S, Bistoletti M, Giaroni C, Giron MC. Involvement of Enteric Glia in Small Intestine Neuromuscular Dysfunction of Toll-Like Receptor 4-Deficient Mice. Cells 2020;9:E838. [PMID: 32244316 DOI: 10.3390/cells9040838] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
27 Seguella L, Pesce M, Capuano R, Casano F, Pesce M, Corpetti C, Vincenzi M, Maftei D, Lattanzi R, Del Re A, Sarnelli G, Gulbransen BD, Esposito G. High-fat diet impairs duodenal barrier function and elicits glia-dependent changes along the gut-brain axis that are required for anxiogenic and depressive-like behaviors. J Neuroinflammation 2021;18:115. [PMID: 33993886 DOI: 10.1186/s12974-021-02164-5] [Reference Citation Analysis]