BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mietlicki-Baase EG, Ortinski PI, Rupprecht LE, Olivos DR, Alhadeff AL, Pierce RC, Hayes MR. The food intake-suppressive effects of glucagon-like peptide-1 receptor signaling in the ventral tegmental area are mediated by AMPA/kainate receptors. Am J Physiol Endocrinol Metab 2013;305:E1367-74. [PMID: 24105414 DOI: 10.1152/ajpendo.00413.2013] [Cited by in Crossref: 97] [Cited by in F6Publishing: 105] [Article Influence: 10.8] [Reference Citation Analysis]
Number Citing Articles
1 Reiner DJ, Mietlicki-Baase EG, Olivos DR, McGrath LE, Zimmer DJ, Koch-Laskowski K, Krawczyk J, Turner CA, Noble EE, Hahn JD, Schmidt HD, Kanoski SE, Hayes MR. Amylin Acts in the Lateral Dorsal Tegmental Nucleus to Regulate Energy Balance Through Gamma-Aminobutyric Acid Signaling. Biol Psychiatry 2017;82:828-38. [PMID: 28237459 DOI: 10.1016/j.biopsych.2016.12.028] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 5.2] [Reference Citation Analysis]
2 Mietlicki-Baase EG, Santollo J, Daniels D. Fluid intake, what's dopamine got to do with it? Physiol Behav 2021;236:113418. [PMID: 33838203 DOI: 10.1016/j.physbeh.2021.113418] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Caruso V, Le Grevés M, Shirazi Fard S, Haitina T, Olszewski PK, Alsiö J, Schiöth HB, Fredriksson R. The Orphan G Protein-Coupled Receptor Gene GPR178 Is Evolutionary Conserved and Altered in Response to Acute Changes in Food Intake. PLoS One 2015;10:e0122061. [PMID: 26047506 DOI: 10.1371/journal.pone.0122061] [Cited by in Crossref: 1] [Article Influence: 0.1] [Reference Citation Analysis]
4 Stanton CH, Holmes AJ, Chang SWC, Joormann J. From Stress to Anhedonia: Molecular Processes through Functional Circuits. Trends Neurosci 2019;42:23-42. [PMID: 30327143 DOI: 10.1016/j.tins.2018.09.008] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
5 Gabery S, Salinas CG, Paulsen SJ, Ahnfelt-Rønne J, Alanentalo T, Baquero AF, Buckley ST, Farkas E, Fekete C, Frederiksen KS, Helms HCC, Jeppesen JF, John LM, Pyke C, Nøhr J, Lu TT, Polex-Wolf J, Prevot V, Raun K, Simonsen L, Sun G, Szilvásy-Szabó A, Willenbrock H, Secher A, Knudsen LB, Hogendorf WFJ. Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 2020;5:133429. [PMID: 32213703 DOI: 10.1172/jci.insight.133429] [Cited by in Crossref: 57] [Cited by in F6Publishing: 43] [Article Influence: 28.5] [Reference Citation Analysis]
6 Łupina M, Talarek S, Kotlińska J, Gibuła-Tarłowska E, Listos P, Listos J. The role of linagliptin, a selective dipeptidyl peptidase-4 inhibitor, in the morphine rewarding effects in rats. Neurochem Int 2020;133:104616. [PMID: 31809774 DOI: 10.1016/j.neuint.2019.104616] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
7 Parker HE, Gribble FM, Reimann F. The role of gut endocrine cells in control of metabolism and appetite. Exp Physiol 2014;99:1116-20. [PMID: 25210110 DOI: 10.1113/expphysiol.2014.079764] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
8 Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021;13:883. [PMID: 33803183 DOI: 10.3390/nu13030883] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
9 Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019;30:72-130. [PMID: 31767182 DOI: 10.1016/j.molmet.2019.09.010] [Cited by in Crossref: 212] [Cited by in F6Publishing: 204] [Article Influence: 70.7] [Reference Citation Analysis]
10 Harasta AE, Power JM, von Jonquieres G, Karl T, Drucker DJ, Housley GD, Schneider M, Klugmann M. Septal Glucagon-Like Peptide 1 Receptor Expression Determines Suppression of Cocaine-Induced Behavior. Neuropsychopharmacology 2015;40:1969-78. [PMID: 25669605 DOI: 10.1038/npp.2015.47] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 6.6] [Reference Citation Analysis]
11 Zhang T, Ruan HZ, Wang YC, Shao YQ, Zhou W, Weng SJ, Zhong YM. Signaling Mechanism for Modulation by GLP-1 and Exendin-4 of GABA Receptors on Rat Retinal Ganglion Cells. Neurosci Bull 2022. [PMID: 35278196 DOI: 10.1007/s12264-022-00826-9] [Reference Citation Analysis]
12 Alhadeff AL, Mergler BD, Zimmer DJ, Turner CA, Reiner DJ, Schmidt HD, Grill HJ, Hayes MR. Endogenous Glucagon-like Peptide-1 Receptor Signaling in the Nucleus Tractus Solitarius is Required for Food Intake Control. Neuropsychopharmacology 2017;42:1471-9. [PMID: 27782127 DOI: 10.1038/npp.2016.246] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 7.2] [Reference Citation Analysis]
13 Wang XF, Liu JJ, Xia J, Liu J, Mirabella V, Pang ZP. Endogenous Glucagon-like Peptide-1 Suppresses High-Fat Food Intake by Reducing Synaptic Drive onto Mesolimbic Dopamine Neurons. Cell Rep 2015;12:726-33. [PMID: 26212334 DOI: 10.1016/j.celrep.2015.06.062] [Cited by in Crossref: 65] [Cited by in F6Publishing: 65] [Article Influence: 9.3] [Reference Citation Analysis]
14 Zheng H, Stornetta RL, Agassandian K, Rinaman L. Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats. Brain Struct Funct 2015;220:3011-22. [PMID: 25012114 DOI: 10.1007/s00429-014-0841-6] [Cited by in Crossref: 39] [Cited by in F6Publishing: 45] [Article Influence: 4.9] [Reference Citation Analysis]
15 Mietlicki-Baase EG, Ortinski PI, Reiner DJ, Sinon CG, McCutcheon JE, Pierce RC, Roitman MF, Hayes MR. Glucagon-like peptide-1 receptor activation in the nucleus accumbens core suppresses feeding by increasing glutamatergic AMPA/kainate signaling. J Neurosci 2014;34:6985-92. [PMID: 24828651 DOI: 10.1523/JNEUROSCI.0115-14.2014] [Cited by in Crossref: 64] [Cited by in F6Publishing: 41] [Article Influence: 8.0] [Reference Citation Analysis]
16 Suchankova P, Yan J, Schwandt ML, Stangl BL, Caparelli EC, Momenan R, Jerlhag E, Engel JA, Hodgkinson CA, Egli M, Lopez MF, Becker HC, Goldman D, Heilig M, Ramchandani VA, Leggio L. The glucagon-like peptide-1 receptor as a potential treatment target in alcohol use disorder: evidence from human genetic association studies and a mouse model of alcohol dependence. Transl Psychiatry 2015;5:e583. [PMID: 26080318 DOI: 10.1038/tp.2015.68] [Cited by in Crossref: 43] [Cited by in F6Publishing: 43] [Article Influence: 6.1] [Reference Citation Analysis]
17 Sirohi S, Schurdak JD, Seeley RJ, Benoit SC, Davis JF. Central & peripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors. Physiology & Behavior 2016;161:140-4. [DOI: 10.1016/j.physbeh.2016.04.013] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
18 Xu J, Bartolome CL, Kong D. Synaptic Regulation of Metabolism. In: Wu Q, Zheng R, editors. Neural Regulation of Metabolism. Singapore: Springer; 2018. pp. 49-77. [DOI: 10.1007/978-981-13-1286-1_4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
19 Mietlicki-Baase EG, Hayes MR. Amylin activates distributed CNS nuclei to control energy balance. Physiol Behav 2014;136:39-46. [PMID: 24480072 DOI: 10.1016/j.physbeh.2014.01.013] [Cited by in Crossref: 37] [Cited by in F6Publishing: 31] [Article Influence: 4.6] [Reference Citation Analysis]
20 Maske CB, Loney GC, Lilly N, Terrill SJ, Williams DL. Intragastric nutrient infusion reduces motivation for food in male and female rats. Am J Physiol Endocrinol Metab 2018;315:E81-90. [PMID: 29533738 DOI: 10.1152/ajpendo.00308.2017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
21 Williams DL. The diverse effects of brain glucagon-like peptide 1 receptors on ingestive behaviour. Br J Pharmacol 2021. [PMID: 33990944 DOI: 10.1111/bph.15535] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Naef L, Pitman KA, Borgland SL. Mesolimbic dopamine and its neuromodulators in obesity and binge eating. CNS Spectr 2015;20:574-83. [PMID: 26514168 DOI: 10.1017/S1092852915000693] [Cited by in Crossref: 34] [Cited by in F6Publishing: 20] [Article Influence: 4.9] [Reference Citation Analysis]
23 Mietlicki-Baase EG, Reiner DJ, Cone JJ, Olivos DR, McGrath LE, Zimmer DJ, Roitman MF, Hayes MR. Amylin modulates the mesolimbic dopamine system to control energy balance. Neuropsychopharmacology 2015;40:372-85. [PMID: 25035079 DOI: 10.1038/npp.2014.180] [Cited by in Crossref: 52] [Cited by in F6Publishing: 52] [Article Influence: 6.5] [Reference Citation Analysis]
24 McCutcheon JE. The role of dopamine in the pursuit of nutritional value. Physiol Behav 2015;152:408-15. [PMID: 25957911 DOI: 10.1016/j.physbeh.2015.05.003] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
25 Borner T, Workinger JL, Tinsley IC, Fortin SM, Stein LM, Chepurny OG, Holz GG, Wierzba AJ, Gryko D, Nexø E, Shaulson ED, Bamezai A, Da Silva VAR, De Jonghe BC, Hayes MR, Doyle RP. Corrination of a GLP-1 Receptor Agonist for Glycemic Control without Emesis. Cell Rep 2020;31:107768. [PMID: 32553160 DOI: 10.1016/j.celrep.2020.107768] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
26 Richard JE, Anderberg RH, Göteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS One. 2015;10:e0119034. [PMID: 25793511 DOI: 10.1371/journal.pone.0119034] [Cited by in Crossref: 76] [Cited by in F6Publishing: 80] [Article Influence: 10.9] [Reference Citation Analysis]
27 Rozo AV, Babu DA, Suen PA, Groff DN, Seeley RJ, Simmons RA, Seale P, Ahima RS, Stoffers DA. Neonatal GLP1R activation limits adult adiposity by durably altering hypothalamic architecture. Mol Metab 2017;6:748-59. [PMID: 28702330 DOI: 10.1016/j.molmet.2017.05.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
28 Burmeister MA, Ayala JE, Smouse H, Landivar-Rocha A, Brown JD, Drucker DJ, Stoffers DA, Sandoval DA, Seeley RJ, Ayala JE. The Hypothalamic Glucagon-Like Peptide 1 Receptor Is Sufficient but Not Necessary for the Regulation of Energy Balance and Glucose Homeostasis in Mice. Diabetes 2017;66:372-84. [PMID: 27908915 DOI: 10.2337/db16-1102] [Cited by in Crossref: 53] [Cited by in F6Publishing: 51] [Article Influence: 8.8] [Reference Citation Analysis]
29 Feinle-bisset C. Modulation of hunger and satiety: hormones and diet. Current Opinion in Clinical Nutrition and Metabolic Care 2014;17:458-64. [DOI: 10.1097/mco.0000000000000078] [Cited by in Crossref: 12] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
30 Graham DL, Durai HH, Trammell TS, Noble BL, Mortlock DP, Galli A, Stanwood GD. A novel mouse model of glucagon-like peptide-1 receptor expression: A look at the brain. J Comp Neurol 2020;528:2445-70. [PMID: 32170734 DOI: 10.1002/cne.24905] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
31 Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The Physiological Control of Eating: Signals, Neurons, and Networks. Physiol Rev 2021. [PMID: 34486393 DOI: 10.1152/physrev.00028.2020] [Reference Citation Analysis]
32 Wise RA, Jordan CJ. Dopamine, behavior, and addiction. J Biomed Sci 2021;28:83. [PMID: 34852810 DOI: 10.1186/s12929-021-00779-7] [Reference Citation Analysis]
33 Card JP, Johnson AL, Llewellyn-Smith IJ, Zheng H, Anand R, Brierley DI, Trapp S, Rinaman L. GLP-1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract. J Comp Neurol 2018;526:2149-64. [PMID: 30019398 DOI: 10.1002/cne.24482] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
34 Hayes MR, Schmidt HD. GLP-1 influences food and drug reward. Curr Opin Behav Sci 2016;9:66-70. [PMID: 27066524 DOI: 10.1016/j.cobeha.2016.02.005] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 7.8] [Reference Citation Analysis]
35 van Ruiten CC, Veltman DJ, Nieuwdorp M, Ijzerman RG. Brain Activation in Response to Low-Calorie Food Pictures: An Explorative Analysis of a Randomized Trial With Dapagliflozin and Exenatide. Front Endocrinol 2022;13:863592. [DOI: 10.3389/fendo.2022.863592] [Reference Citation Analysis]
36 Liu J, Conde K, Zhang P, Lilascharoen V, Lim BK, Seeley R, Zhu JJ, Scott MM, Pang ZP. Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon Like Peptide-1 in the Paraventricular Hypothalamus. SSRN Journal. [DOI: 10.2139/ssrn.3155507] [Cited by in Crossref: 1] [Reference Citation Analysis]
37 Hsu TM, Noble EE, Liu CM, Cortella AM, Konanur VR, Suarez AN, Reiner DJ, Hahn JD, Hayes MR, Kanoski SE. A hippocampus to prefrontal cortex neural pathway inhibits food motivation through glucagon-like peptide-1 signaling. Mol Psychiatry 2018;23:1555-65. [PMID: 28461695 DOI: 10.1038/mp.2017.91] [Cited by in Crossref: 51] [Cited by in F6Publishing: 51] [Article Influence: 10.2] [Reference Citation Analysis]
38 Liu J, Pang ZP. Glucagon-like peptide-1 drives energy metabolism on the synaptic highway. FEBS J 2016;283:4413-23. [DOI: 10.1111/febs.13785] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
39 Holt MK, Trapp S. The physiological role of the brain GLP-1 system in stress. Cogent Biol 2016;2:1229086. [PMID: 27722184 DOI: 10.1080/23312025.2016.1229086] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
40 Wen S, Wang C, Gong M, Zhou L. An overview of energy and metabolic regulation. Sci China Life Sci 2019;62:771-90. [PMID: 30367342 DOI: 10.1007/s11427-018-9371-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
41 Chen XY, Chen L, Yang W, Xie AM. GLP-1 Suppresses Feeding Behaviors and Modulates Neuronal Electrophysiological Properties in Multiple Brain Regions. Front Mol Neurosci 2021;14:793004. [PMID: 34975402 DOI: 10.3389/fnmol.2021.793004] [Reference Citation Analysis]
42 Sekar R, Wang L, Chow BK. Central Control of Feeding Behavior by the Secretin, PACAP, and Glucagon Family of Peptides. Front Endocrinol (Lausanne) 2017;8:18. [PMID: 28223965 DOI: 10.3389/fendo.2017.00018] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
43 Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021;11:1679-730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Cork SC, Richards JE, Holt MK, Gribble FM, Reimann F, Trapp S. Distribution and characterisation of Glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol Metab 2015;4:718-31. [PMID: 26500843 DOI: 10.1016/j.molmet.2015.07.008] [Cited by in Crossref: 194] [Cited by in F6Publishing: 186] [Article Influence: 27.7] [Reference Citation Analysis]
45 Hsu TM, Hahn JD, Konanur VR, Lam A, Kanoski SE. Hippocampal GLP-1 receptors influence food intake, meal size, and effort-based responding for food through volume transmission. Neuropsychopharmacology 2015;40:327-37. [PMID: 25035078 DOI: 10.1038/npp.2014.175] [Cited by in Crossref: 77] [Cited by in F6Publishing: 76] [Article Influence: 9.6] [Reference Citation Analysis]
46 Merkel R, Moreno A, Zhang Y, Herman R, Ben Nathan J, Zeb S, Rahematpura S, Stecyk K, Milliken BT, Hayes MR, Doyle RP, Schmidt HD. A novel approach to treating opioid use disorders: Dual agonists of glucagon-like peptide-1 receptors and neuropeptide Y2 receptors. Neurosci Biobehav Rev 2021;131:1169-79. [PMID: 34715149 DOI: 10.1016/j.neubiorev.2021.10.026] [Reference Citation Analysis]
47 Rorabaugh JM, Stratford JM, Zahniser NR. Differences in bingeing behavior and cocaine reward following intermittent access to sucrose, glucose or fructose solutions. Neuroscience 2015;301:213-20. [PMID: 26079112 DOI: 10.1016/j.neuroscience.2015.06.015] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
48 Cassidy RM, Tong Q. Hunger and Satiety Gauge Reward Sensitivity. Front Endocrinol (Lausanne) 2017;8:104. [PMID: 28572791 DOI: 10.3389/fendo.2017.00104] [Cited by in Crossref: 32] [Cited by in F6Publishing: 21] [Article Influence: 6.4] [Reference Citation Analysis]
49 Cheng W, Gonzalez I, Pan W, Tsang AH, Adams J, Ndoka E, Gordian D, Khoury B, Roelofs K, Evers SS, MacKinnon A, Wu S, Frikke-Schmidt H, Flak JN, Trevaskis JL, Rhodes CJ, Fukada SI, Seeley RJ, Sandoval DA, Olson DP, Blouet C, Myers MG Jr. Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding. Cell Metab 2020;31:301-312.e5. [PMID: 31955990 DOI: 10.1016/j.cmet.2019.12.012] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 15.0] [Reference Citation Analysis]
50 Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev. 2017;97:411-463. [PMID: 28003328 DOI: 10.1152/physrev.00031.2014] [Cited by in Crossref: 230] [Cited by in F6Publishing: 211] [Article Influence: 46.0] [Reference Citation Analysis]
51 Foll CL, Lutz TA. Systemic and Central Amylin, Amylin Receptor Signaling, and Their Physiological and Pathophysiological Roles in Metabolism. Compr Physiol 2020;10:811-37. [PMID: 32941692 DOI: 10.1002/cphy.c190034] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Meye FJ, Adan RA. Feelings about food: the ventral tegmental area in food reward and emotional eating. Trends Pharmacol Sci 2014;35:31-40. [PMID: 24332673 DOI: 10.1016/j.tips.2013.11.003] [Cited by in Crossref: 85] [Cited by in F6Publishing: 81] [Article Influence: 9.4] [Reference Citation Analysis]
53 Vadnie CA, Park JH, Abdel Gawad N, Ho AM, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci 2014;8:288. [PMID: 25278825 DOI: 10.3389/fnins.2014.00288] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
54 Vallöf D, Kalafateli AL, Jerlhag E. Brain region specific glucagon-like peptide-1 receptors regulate alcohol-induced behaviors in rodents. Psychoneuroendocrinology 2019;103:284-95. [PMID: 30771711 DOI: 10.1016/j.psyneuen.2019.02.006] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
55 Liu J, Conde K, Zhang P, Lilascharoen V, Xu Z, Lim BK, Seeley RJ, Zhu JJ, Scott MM, Pang ZP. Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon-like Peptide-1 in the Paraventricular Hypothalamus. Neuron 2017;96:897-909.e5. [PMID: 29056294 DOI: 10.1016/j.neuron.2017.09.042] [Cited by in Crossref: 62] [Cited by in F6Publishing: 60] [Article Influence: 12.4] [Reference Citation Analysis]
56 Vestlund J, Jerlhag E. The glucagon-like peptide-1 receptor agonist, exendin-4, reduces sexual interaction behaviors in a brain site-specific manner in sexually naïve male mice. Horm Behav 2020;124:104778. [PMID: 32450068 DOI: 10.1016/j.yhbeh.2020.104778] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
57 Kern KA, Mietlicki-baase EG. Distributed amylin receptor signaling and its influence on motivated behavior. Physiology & Behavior 2020;222:112958. [DOI: 10.1016/j.physbeh.2020.112958] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
58 Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Lamas JA, Mallo F. Glucagon-Like Peptide-1 (GLP-1) in the Integration of Neural and Endocrine Responses to Stress. Nutrients 2020;12:E3304. [PMID: 33126672 DOI: 10.3390/nu12113304] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
59 Hansen HH, Fabricius K, Barkholt P, Mikkelsen JD, Jelsing J, Pyke C, Knudsen LB, Vrang N. Characterization of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, in rat partial and full nigral 6-hydroxydopamine lesion models of Parkinson's disease. Brain Research 2016;1646:354-65. [DOI: 10.1016/j.brainres.2016.05.038] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.5] [Reference Citation Analysis]
60 Chiacchierini G, Naneix F, Peters KZ, Apergis-Schoute J, Snoeren EMS, McCutcheon JE. Protein Appetite Drives Macronutrient-Related Differences in Ventral Tegmental Area Neural Activity. J Neurosci 2021;41:5080-92. [PMID: 33926995 DOI: 10.1523/JNEUROSCI.3082-20.2021] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Bornebusch AB, Fink-Jensen A, Wörtwein G, Seeley RJ, Thomsen M. Glucagon-Like Peptide-1 Receptor Agonist Treatment Does Not Reduce Abuse-Related Effects of Opioid Drugs. eNeuro 2019;6:ENEURO. [PMID: 31058214 DOI: 10.1523/ENEURO.0443-18.2019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 4.7] [Reference Citation Analysis]
62 Thomsen M, Dencker D, Wörtwein G, Weikop P, Egecioglu E, Jerlhag E, Fink-Jensen A, Molander A. The glucagon-like peptide 1 receptor agonist Exendin-4 decreases relapse-like drinking in socially housed mice. Pharmacol Biochem Behav 2017;160:14-20. [PMID: 28778739 DOI: 10.1016/j.pbb.2017.07.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 29] [Article Influence: 6.6] [Reference Citation Analysis]
63 Thiebaud N, Gribble F, Reimann F, Trapp S, Fadool DA. A unique olfactory bulb microcircuit driven by neurons expressing the precursor to glucagon-like peptide 1. Sci Rep 2019;9:15542. [PMID: 31664163 DOI: 10.1038/s41598-019-51880-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
64 Mietlicki-Baase EG. Amylin-mediated control of glycemia, energy balance, and cognition. Physiol Behav 2016;162:130-40. [PMID: 26922873 DOI: 10.1016/j.physbeh.2016.02.034] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 4.5] [Reference Citation Analysis]
65 Jones BJ, Bloom SR. The New Era of Drug Therapy for Obesity: The Evidence and the Expectations. Drugs 2015;75:935-45. [PMID: 25985865 DOI: 10.1007/s40265-015-0410-1] [Cited by in Crossref: 33] [Cited by in F6Publishing: 24] [Article Influence: 5.5] [Reference Citation Analysis]
66 Fortin SM, Lipsky RK, Lhamo R, Chen J, Kim E, Borner T, Schmidt HD, Hayes MR. GABA neurons in the nucleus tractus solitarius express GLP-1 receptors and mediate anorectic effects of liraglutide in rats. Sci Transl Med 2020;12:eaay8071. [PMID: 32132220 DOI: 10.1126/scitranslmed.aay8071] [Cited by in Crossref: 22] [Cited by in F6Publishing: 19] [Article Influence: 22.0] [Reference Citation Analysis]
67 Asevedo E, Rizzo LB, Gadelha A, Mansur RB, Ota VK, Berberian AA, Scarpato BS, Teixeira AL, Bressan RA, Brietzke E. Peripheral interleukin-2 level is associated with negative symptoms and cognitive performance in schizophrenia. Physiol Behav. 2014;129:194-198. [PMID: 24576679 DOI: 10.1016/j.physbeh.2014.02.032] [Cited by in Crossref: 36] [Cited by in F6Publishing: 34] [Article Influence: 4.5] [Reference Citation Analysis]
68 Hayes MR, Mietlicki-Baase EG, Kanoski SE, De Jonghe BC. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr 2014;34:237-60. [PMID: 24819325 DOI: 10.1146/annurev-nutr-071812-161201] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 6.8] [Reference Citation Analysis]
69 Liu S, Borgland S. Regulation of the mesolimbic dopamine circuit by feeding peptides. Neuroscience 2015;289:19-42. [DOI: 10.1016/j.neuroscience.2014.12.046] [Cited by in Crossref: 60] [Cited by in F6Publishing: 58] [Article Influence: 8.6] [Reference Citation Analysis]
70 Woodward ORM, Gribble FM, Reimann F, Lewis JE. Gut peptide regulation of food intake - evidence for the modulation of hedonic feeding. J Physiol 2021. [PMID: 34152020 DOI: 10.1113/JP280581] [Reference Citation Analysis]
71 Sarihi A, Emam AH, Panah MH, Komaki A, Seif S, Vafaeirad M, Alaii E. Effects of activation and blockade of orexin A receptors in the medial preoptic area on food intake in male rats. Neuroscience Letters 2015;604:157-60. [DOI: 10.1016/j.neulet.2015.07.050] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
72 Hernandez NS, Ige KY, Mietlicki-Baase EG, Molina-Castro GC, Turner CA, Hayes MR, Schmidt HD. Glucagon-like peptide-1 receptor activation in the ventral tegmental area attenuates cocaine seeking in rats. Neuropsychopharmacology 2018;43:2000-8. [PMID: 29497166 DOI: 10.1038/s41386-018-0010-3] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 10.3] [Reference Citation Analysis]
73 Maske CB, Jackson CM, Terrill SJ, Eckel LA, Williams DL. Estradiol modulates the anorexic response to central glucagon-like peptide 1. Horm Behav 2017;93:109-17. [PMID: 28558993 DOI: 10.1016/j.yhbeh.2017.05.012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.8] [Reference Citation Analysis]
74 Mietlicki-Baase EG, Olivos DR, Jeffrey BA, Hayes MR. Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake. Am J Physiol Endocrinol Metab 2015;308:E1116-22. [PMID: 25898952 DOI: 10.1152/ajpendo.00087.2015] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
75 Abtahi S, Howell E, Salvucci JT, Bastacky JMR, Dunn DP, Currie PJ. Exendin-4 antagonizes the metabolic action of acylated ghrelinergic signaling in the hypothalamic paraventricular nucleus. Gen Comp Endocrinol 2019;270:75-81. [PMID: 30336120 DOI: 10.1016/j.ygcen.2018.10.008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
76 García-Cabrerizo R, Carbia C, O Riordan KJ, Schellekens H, Cryan JF. Microbiota-gut-brain axis as a regulator of reward processes. J Neurochem 2021;157:1495-524. [PMID: 33368280 DOI: 10.1111/jnc.15284] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
77 Alhadeff AL, Holland RA, Nelson A, Grill HJ, De Jonghe BC. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections. J Neurosci 2015;35:11094-104. [PMID: 26245970 DOI: 10.1523/JNEUROSCI.0440-15.2015] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 2.6] [Reference Citation Analysis]
78 Dixon TN, McNally GP, Ong ZY. Glucagon-Like Peptide-1 Receptor Signaling in the Ventral Tegmental Area Reduces Alcohol Self-Administration in Male Rats. Alcohol Clin Exp Res 2020;44:2118-29. [PMID: 33043520 DOI: 10.1111/acer.14437] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
79 Liberini CG, Koch-Laskowski K, Shaulson E, McGrath LE, Lipsky RK, Lhamo R, Ghidewon M, Ling T, Stein LM, Hayes MR. Combined Amylin/GLP-1 pharmacotherapy to promote and sustain long-lasting weight loss. Sci Rep 2019;9:8447. [PMID: 31186439 DOI: 10.1038/s41598-019-44591-8] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
80 Hernandez NS, O'Donovan B, Ortinski PI, Schmidt HD. Activation of glucagon-like peptide-1 receptors in the nucleus accumbens attenuates cocaine seeking in rats. Addict Biol 2019;24:170-81. [PMID: 29226617 DOI: 10.1111/adb.12583] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 12.7] [Reference Citation Analysis]
81 Jerlhag E. Alcohol-mediated behaviours and the gut-brain axis; with focus on glucagon-like peptide-1. Brain Research 2020;1727:146562. [DOI: 10.1016/j.brainres.2019.146562] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
82 Trapp S, Cork SC. PPG neurons of the lower brain stem and their role in brain GLP-1 receptor activation. Am J Physiol Regul Integr Comp Physiol 2015;309:R795-804. [PMID: 26290108 DOI: 10.1152/ajpregu.00333.2015] [Cited by in Crossref: 46] [Cited by in F6Publishing: 45] [Article Influence: 6.6] [Reference Citation Analysis]
83 Caruso V, Sreedharan S, Carlini VP, Jacobsson JA, Haitina T, Hammer J, Stephansson O, Crona F, Sommer WH, Risérus U, Lannfelt L, Marcus C, Heilig M, de Barioglio SR, Fredriksson R, Schiöth HB. mRNA GPR162 changes are associated with decreased food intake in rat, and its human genetic variants with impairments in glucose homeostasis in two Swedish cohorts. Gene 2016;581:139-45. [PMID: 26827797 DOI: 10.1016/j.gene.2016.01.044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
84 Gerth AI, Alhadeff AL, Grill HJ, Roitman MF. Regional influence of cocaine on evoked dopamine release in the nucleus accumbens core: A role for the caudal brainstem. Brain Res 2017;1655:252-60. [PMID: 27789280 DOI: 10.1016/j.brainres.2016.10.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
85 D'Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci 2015;9:404. [PMID: 26594139 DOI: 10.3389/fnins.2015.00404] [Cited by in Crossref: 47] [Cited by in F6Publishing: 57] [Article Influence: 6.7] [Reference Citation Analysis]
86 Maniscalco JW, Rinaman L. Vagal Interoceptive Modulation of Motivated Behavior. Physiology (Bethesda) 2018;33:151-67. [PMID: 29412062 DOI: 10.1152/physiol.00036.2017] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
87 Ong ZY, Liu JJ, Pang ZP, Grill HJ. Paraventricular Thalamic Control of Food Intake and Reward: Role of Glucagon-Like Peptide-1 Receptor Signaling. Neuropsychopharmacology 2017;42:2387-97. [PMID: 28811669 DOI: 10.1038/npp.2017.150] [Cited by in Crossref: 48] [Cited by in F6Publishing: 48] [Article Influence: 9.6] [Reference Citation Analysis]
88 Guerrero-Hreins E, Goldstone AP, Brown RM, Sumithran P. The therapeutic potential of GLP-1 analogues for stress-related eating and role of GLP-1 in stress, emotion and mood: a review. Prog Neuropsychopharmacol Biol Psychiatry 2021;110:110303. [PMID: 33741445 DOI: 10.1016/j.pnpbp.2021.110303] [Reference Citation Analysis]
89 Mietlicki-Baase EG, Liberini CG, Workinger JL, Bonaccorso RL, Borner T, Reiner DJ, Koch-Laskowski K, McGrath LE, Lhamo R, Stein LM, De Jonghe BC, Holz GG, Roth CL, Doyle RP, Hayes MR. A vitamin B12 conjugate of exendin-4 improves glucose tolerance without associated nausea or hypophagia in rodents. Diabetes Obes Metab 2018;20:1223-34. [PMID: 29327400 DOI: 10.1111/dom.13222] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
90 Ladenheim EE. Liraglutide and obesity: a review of the data so far. Drug Des Devel Ther 2015;9:1867-75. [PMID: 25848222 DOI: 10.2147/DDDT.S58459] [Cited by in Crossref: 47] [Cited by in F6Publishing: 19] [Article Influence: 6.7] [Reference Citation Analysis]
91 Konanur VR, Hsu TM, Kanoski SE, Hayes MR, Roitman MF. Phasic dopamine responses to a food-predictive cue are suppressed by the glucagon-like peptide-1 receptor agonist Exendin-4. Physiol Behav 2020;215:112771. [PMID: 31821815 DOI: 10.1016/j.physbeh.2019.112771] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
92 Eren-Yazicioglu CY, Yigit A, Dogruoz RE, Yapici-Eser H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front Behav Neurosci 2020;14:614884. [PMID: 33536884 DOI: 10.3389/fnbeh.2020.614884] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Hernandez NS, Schmidt HD. Central GLP-1 receptors: Novel molecular targets for cocaine use disorder. Physiol Behav 2019;206:93-105. [PMID: 30930091 DOI: 10.1016/j.physbeh.2019.03.026] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
94 Smith NK, Hackett TA, Galli A, Flynn CR. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem Int 2019;128:94-105. [PMID: 31002893 DOI: 10.1016/j.neuint.2019.04.010] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
95 Bodnaruc AM, Prud'homme D, Blanchet R, Giroux I. Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review. Nutr Metab (Lond) 2016;13:92. [PMID: 27990172 DOI: 10.1186/s12986-016-0153-3] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 7.0] [Reference Citation Analysis]
96 De Jonghe BC, Holland RA, Olivos DR, Rupprecht LE, Kanoski SE, Hayes MR. Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea. Physiol Behav 2016;153:109-14. [PMID: 26522737 DOI: 10.1016/j.physbeh.2015.10.031] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.9] [Reference Citation Analysis]
97 Bojanowska E, Ciosek J. Can We Selectively Reduce Appetite for Energy-Dense Foods? An Overview of Pharmacological Strategies for Modification of Food Preference Behavior. Curr Neuropharmacol 2016;14:118-42. [PMID: 26549651 DOI: 10.2174/1570159x14666151109103147] [Cited by in Crossref: 19] [Cited by in F6Publishing: 10] [Article Influence: 3.2] [Reference Citation Analysis]
98 Schmidt HD, Mietlicki-Baase EG, Ige KY, Maurer JJ, Reiner DJ, Zimmer DJ, Van Nest DS, Guercio LA, Wimmer ME, Olivos DR, De Jonghe BC, Hayes MR. Glucagon-Like Peptide-1 Receptor Activation in the Ventral Tegmental Area Decreases the Reinforcing Efficacy of Cocaine. Neuropsychopharmacology 2016;41:1917-28. [PMID: 26675243 DOI: 10.1038/npp.2015.362] [Cited by in Crossref: 64] [Cited by in F6Publishing: 64] [Article Influence: 9.1] [Reference Citation Analysis]
99 Hanssen R, Kretschmer AC, Rigoux L, Albus K, Edwin Thanarajah S, Sitnikow T, Melzer C, Cornely OA, Brüning JC, Tittgemeyer M. GLP-1 and hunger modulate incentive motivation depending on insulin sensitivity in humans. Mol Metab 2021;45:101163. [PMID: 33453418 DOI: 10.1016/j.molmet.2021.101163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Jerlhag E. Gut-brain axis and addictive disorders: A review with focus on alcohol and drugs of abuse. Pharmacol Ther 2019;196:1-14. [PMID: 30439457 DOI: 10.1016/j.pharmthera.2018.11.005] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
101 Anderberg RH, Anefors C, Bergquist F, Nissbrandt H, Skibicka KP. Dopamine signaling in the amygdala, increased by food ingestion and GLP-1, regulates feeding behavior. Physiol Behav 2014;136:135-44. [PMID: 24560840 DOI: 10.1016/j.physbeh.2014.02.026] [Cited by in Crossref: 46] [Cited by in F6Publishing: 44] [Article Influence: 5.8] [Reference Citation Analysis]
102 Reddy IA, Pino JA, Weikop P, Osses N, Sørensen G, Bering T, Valle C, Bluett RJ, Erreger K, Wortwein G, Reyes JG, Graham D, Stanwood GD, Hackett TA, Patel S, Fink-Jensen A, Torres GE, Galli A. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels. Transl Psychiatry 2016;6:e809. [PMID: 27187231 DOI: 10.1038/tp.2016.86] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 6.2] [Reference Citation Analysis]
103 Caruso V, Hägglund MG, Badiali L, Bagchi S, Roshanbin S, Ahmad T, Schiöth HB, Fredriksson R. The G protein-coupled receptor GPR162 is widely distributed in the CNS and highly expressed in the hypothalamus and in hedonic feeding areas. Gene 2014;553:1-6. [PMID: 25275856 DOI: 10.1016/j.gene.2014.09.042] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
104 Kanoski SE, Hayes MR, Skibicka KP. GLP-1 and weight loss: unraveling the diverse neural circuitry. Am J Physiol Regul Integr Comp Physiol. 2016;310:R885-R895. [PMID: 27030669 DOI: 10.1152/ajpregu.00520.2015] [Cited by in Crossref: 86] [Cited by in F6Publishing: 89] [Article Influence: 14.3] [Reference Citation Analysis]
105 Williams DL. Neural integration of satiation and food reward: role of GLP-1 and orexin pathways. Physiol Behav. 2014;136:194-199. [PMID: 24650552 DOI: 10.1016/j.physbeh.2014.03.013] [Cited by in Crossref: 43] [Cited by in F6Publishing: 42] [Article Influence: 5.4] [Reference Citation Analysis]
106 Kanoski SE, Ong ZY, Fortin SM, Schlessinger ES, Grill HJ. Liraglutide, leptin and their combined effects on feeding: additive intake reduction through common intracellular signalling mechanisms. Diabetes Obes Metab 2015;17:285-93. [PMID: 25475828 DOI: 10.1111/dom.12423] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
107 Liu CM, Kanoski SE. Homeostatic and non-homeostatic controls of feeding behavior: Distinct vs. common neural systems. Physiol Behav 2018;193:223-31. [PMID: 29421588 DOI: 10.1016/j.physbeh.2018.02.011] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 8.5] [Reference Citation Analysis]
108 Reiner DJ, Mietlicki-Baase EG, McGrath LE, Zimmer DJ, Bence KK, Sousa GL, Konanur VR, Krawczyk J, Burk DH, Kanoski SE, Hermann GE, Rogers RC, Hayes MR. Astrocytes Regulate GLP-1 Receptor-Mediated Effects on Energy Balance. J Neurosci 2016;36:3531-40. [PMID: 27013681 DOI: 10.1523/JNEUROSCI.3579-15.2016] [Cited by in Crossref: 55] [Cited by in F6Publishing: 37] [Article Influence: 9.2] [Reference Citation Analysis]
109 Jones S, Hyde A, Davidson TL. Reframing appetitive reinforcement learning and reward valuation as effects mediated by hippocampal-dependent behavioral inhibition. Nutr Res 2020;79:1-12. [PMID: 32544728 DOI: 10.1016/j.nutres.2020.05.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
110 Boyle CN, Lutz TA, Le Foll C. Amylin - Its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol Metab 2018;8:203-10. [PMID: 29203236 DOI: 10.1016/j.molmet.2017.11.009] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 7.6] [Reference Citation Analysis]
111 Alhadeff AL, Baird JP, Swick JC, Hayes MR, Grill HJ. Glucagon-like Peptide-1 receptor signaling in the lateral parabrachial nucleus contributes to the control of food intake and motivation to feed. Neuropsychopharmacology 2014;39:2233-43. [PMID: 24681814 DOI: 10.1038/npp.2014.74] [Cited by in Crossref: 69] [Cited by in F6Publishing: 70] [Article Influence: 8.6] [Reference Citation Analysis]
112 de La Serre CB, Kim YJ, Moran TH, Bi S. Dorsomedial hypothalamic NPY affects cholecystokinin-induced satiety via modulation of brain stem catecholamine neuronal signaling. Am J Physiol Regul Integr Comp Physiol 2016;311:R930-9. [PMID: 27534875 DOI: 10.1152/ajpregu.00184.2015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]