BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ahmad R, Khan M, Mishra P, Jahan N, Ahsan MA, Ahmad I, Khan MR, Watanabe Y, Syed MA, Furukawa H, Khosla A. Engineered Hierarchical CuO Nanoleaves Based Electrochemical Nonenzymatic Biosensor for Glucose Detection. J Electrochem Soc 2021;168:017501. [DOI: 10.1149/1945-7111/abd515] [Cited by in Crossref: 46] [Cited by in F6Publishing: 51] [Article Influence: 46.0] [Reference Citation Analysis]
Number Citing Articles
1 Xi Y, Xiao Z, Lv H, Sun H, Zhai S, An Q. Construction of CuO/Cu-nanoflowers loaded on chitosan-derived porous carbon for high energy density supercapacitors. Journal of Colloid and Interface Science 2023;630:525-534. [DOI: 10.1016/j.jcis.2022.10.037] [Reference Citation Analysis]
2 Mustafa A, Alsafari IA, Somaily H, Yousaf S, Din MI, Rahman J, Shahid M, Ashraf M, Warsi MF. Fabrication, characterization of NiO–Co3O4/rGO based nanohybrid and application in the development of non-enzymatic glucose sensor. Physica B: Condensed Matter 2023;648:414404. [DOI: 10.1016/j.physb.2022.414404] [Reference Citation Analysis]
3 Akbari Javar H, Mahmoudi-moghaddam H, Rajabizadeh A, Hamzeh S, Akbari E. Development of an electrochemical sensor based on Ce3+ and CuO for the determination of amaranth in soft drinks. Microchemical Journal 2022;183:108081. [DOI: 10.1016/j.microc.2022.108081] [Reference Citation Analysis]
4 Mohammadpour-haratbar A, Mohammadpour-haratbar S, Zare Y, Rhee KY, Park S. A Review on Non-Enzymatic Electrochemical Biosensors of Glucose Using Carbon Nanofiber Nanocomposites. Biosensors 2022;12:1004. [DOI: 10.3390/bios12111004] [Reference Citation Analysis]
5 Dong H, Wu Z, Liu S, Li Y, Jiang F, Liu Q, Wang P, Xu Z, Li Y. A “signal-off” electrochemiluminescence biosensing platform based on high efficiency quenching effect of functionalized copper oxide toward glutathione-gold nanoclusters. Talanta 2022;249:123649. [DOI: 10.1016/j.talanta.2022.123649] [Reference Citation Analysis]
6 Li M, Huan K, Deng D, Yan X, Li Y, Luo L. Coaxial electrospinning synthesis of size-tunable CuO/NiO hollow heterostructured nanofibers: towards detection of glucose level in human serum. Colloids and Surfaces B: Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.113047] [Reference Citation Analysis]
7 Wang Z, Liu Y, Cheng Y, Men Y, Liu P, Zhang L, Dai B, Pan Y. Fast and efficient electrocatalytic oxidation of glucose triggered by Cu2O-CuO nanoparticles supported on carbon nanotubes. Front Chem 2022;10:998812. [DOI: 10.3389/fchem.2022.998812] [Reference Citation Analysis]
8 Xu B, Xiang X, Luo Z, Huang J. A novel wide-range colorimetric glucose biosensor based on enzymatic etching of triangular gold nanosheets.. [DOI: 10.21203/rs.3.rs-1900549/v1] [Reference Citation Analysis]
9 Yang J, Chen H, Zhu C, Huang Z, Ou R, Gao S, Yang Z. A miniature CuO nanoarray sensor for noninvasive detection of trace salivary glucose. Analytical Biochemistry 2022. [DOI: 10.1016/j.ab.2022.114857] [Reference Citation Analysis]
10 Malavekar D, Jadhav S, Kale S, Patil U, Lokhande C. Surface modification of copper selenide for reliable non-enzymatic glucose sensing. Materials Today Sustainability 2022. [DOI: 10.1016/j.mtsust.2022.100215] [Reference Citation Analysis]
11 Nagarjuna Y, Hsiao Y. Low-Temperature Ammonia Gas Sensor Based on NiO/ZnO Heterojunction Nanosheet on MEMS Devices. J Electrochem Soc 2022;169:077502. [DOI: 10.1149/1945-7111/ac7c40] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Muslu E, Eren E, Oksuz AU. Prussian Blue-Based Flexible Thin Film Nanoarchitectonics for Non-enzymatic Electrochemical Glucose Sensor. J Inorg Organomet Polym. [DOI: 10.1007/s10904-022-02290-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Ayaz S, Karakaya S, Emir G, Uşaklıgil N, Giray Dilgin D, Dilgin Y. Flow-Injection Amperometric Determination of Glucose Using Nickel Oxide-Cobalt (II,III) Oxide and Nickel Oxide-Copper Nanoparticle Modified Pencil Graphite Electrodes. Analytical Letters. [DOI: 10.1080/00032719.2022.2043890] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Dhukate AK, Mullani SB, Dennany L, Delekar SD. Metal oxide nanocomposite-based electrochemical biosensing studies. Advances in Metal Oxides and Their Composites for Emerging Applications 2022. [DOI: 10.1016/b978-0-323-85705-5.00015-4] [Reference Citation Analysis]
15 Sumanth A, Mishra V, Pandey P, Rao MSR, Dixit T. Investigations Into the Role of Native Defects on Photovoltaic and Spintronic Properties in Copper Oxide. IEEE Trans Nanotechnology 2022;21:522-7. [DOI: 10.1109/tnano.2022.3204587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Ma Y, Qiang T, Gao M, Liang J, Jiang Y. Quantitative, Temperature-Calibrated and Real-Time Glucose Biosensor Based on Symmetrical-Meandering-Type Resistor and Intertwined Capacitor Structure. Biosensors 2021;11:484. [DOI: 10.3390/bios11120484] [Reference Citation Analysis]
17 Guati C, Gomez-coma L, Fallanza M, Ortiz I. Non-Enzymatic Amperometric Glucose Screen-Printed Sensors Based on Copper and Copper Oxide Particles. Applied Sciences 2021;11:10830. [DOI: 10.3390/app112210830] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
18 Qi Y, Hu Y, Wu X, Wu W, Bao J, Yang H, Zhao J, Hou C, Huo D. Self-Supporting Flexible Enzyme-Free Sensor Based on CoS-PPy-CP for Glucose Detection. J Electrochem Soc 2021;168:107507. [DOI: 10.1149/1945-7111/ac29dc] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
19 Bai X, Yang Z. Synthesis of Ag/Co3O4 for High Sensitive Non-Enzymatic Glucose Sensor through Synergy of Surface/Interface Engineering. J Electrochem Soc 2021;168:107508. [DOI: 10.1149/1945-7111/ac2d3d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Cheng H, Li T, Li X, Feng J, Tang T, Qin D. Facile Synthesis of Co 9 S 8 Nanocages as an Electrochemical Sensor for Luteolin Detection. J Electrochem Soc 2021;168:087504. [DOI: 10.1149/1945-7111/ac1813] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 56.0] [Reference Citation Analysis]
21 Pu F, Yu Z, Lu W, Kong C, Lin R, Bai X, Zhang X, Lv J, Yang Z. RGO@Cu 2 O@Cu Ternary Nanocomposite for High-Performance Non-Enzymatic Glucose Detection. J Electrochem Soc 2021;168:087503. [DOI: 10.1149/1945-7111/ac1810] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Sampathkumar P, Sudalaimani S, Giribabu K, Suresh C. Nanomolar Detection of Vitamin C in Artificial Urine using a Glassy Carbon Electrode Modified with Molybdenum Disulfide. J Electrochem Soc 2021;168:087507. [DOI: 10.1149/1945-7111/ac1973] [Reference Citation Analysis]
23 Welch EC, Powell JM, Clevinger TB, Fairman AE, Shukla A. Advances in Biosensors and Diagnostic Technologies Using Nanostructures and Nanomaterials. Adv Funct Mater 2021;31:2104126. [DOI: 10.1002/adfm.202104126] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 20.0] [Reference Citation Analysis]
24 Wang H, Cao T, Wu S, Wang S, Yan C, Wang Z, Zhang X, Tong Z. Synthesis of Novel Iron Porphyrin/Titanoniobate Nanocomposite for Electrochemical Detection of Uric Acid. J Electrochem Soc 2021;168:077509. [DOI: 10.1149/1945-7111/ac139a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Dhiman TK, Lakshmi GBVS, Dave K, Roychoudhury A, Dalal N, Jha SK, Kumar A, Han K, Solanki PR. Rapid and Label-Free Electrochemical Detection of Fumonisin-B1 Using Microfluidic Biosensing Platform Based on Ag-CeO 2 Nanocomposite. J Electrochem Soc 2021;168:077510. [DOI: 10.1149/1945-7111/ac13cf] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
26 Li Y, Du C, Liu X, Wang K, Yang H, Li Y. Non-Enzymatic Methyl Parathion Electrochemical Sensor Based on Hydroxyl Functionalized Ionic Liquid/Zeolitic Imidazolate Framework Composites Modified Glassy Carbon Electrode. J Electrochem Soc 2021;168:077511. [DOI: 10.1149/1945-7111/ac13d4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Peng R, Gao Y, Chen W. Determination of Chloramphenicol by a New Electrochemically Activated Glassy Carbon Electrode in Sodium Sulfate Medium. J Electrochem Soc 2021;168:067509. [DOI: 10.1149/1945-7111/ac04ef] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
28 Khan M, Nagal V, Nakate UT, Khan MR, Khosla A, Ahmad R. Engineered CuO Nanofibers with Boosted Non-Enzymatic Glucose Sensing Performance. J Electrochem Soc 2021;168:067507. [DOI: 10.1149/1945-7111/ac030d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
29 dos Santos OAL, Sneha M, Devarani T, Bououdina M, Backx BP, Vijaya JJ, Bellucci S. Review—Perovskite/Spinel Based Graphene Derivatives Electrochemical and Biosensors. J Electrochem Soc 2021;168:067506. [DOI: 10.1149/1945-7111/ac0306] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
30 Dinu Gugoasa LA, Pogacean F, Kurbanoglu S, Tudoran L, Serban AB, Kacso I, Pruneanu S. Graphene-Gold Nanoparticles Nanozyme-Based Electrochemical Sensor with Enhanced Laccase-Like Activity for Determination of Phenolic Substrates. J Electrochem Soc 2021;168:067523. [DOI: 10.1149/1945-7111/ac0c32] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
31 Luo M, Zhang Y, Zhao S. Non-Enzymatic Hydrogen Peroxide Sensor Based on Fe 3 O 4 @Polydopamine-Ag Nanocomposite Modified Magnetic Glassy Carbon Electrode. J Electrochem Soc 2021;168:067511. [DOI: 10.1149/1945-7111/ac0604] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
32 Abdullah MM, Faisal M, Ahmed J, Harraz FA, Jalalah M, Alsareii SA. Sensitive Detection of Aqueous Methanol by Electrochemical Route Using Mesoporous α-Fe 2 O 3 Doped CdSe Nanostructures Modified Glassy Carbon Electrode. J Electrochem Soc 2021;168:057525. [DOI: 10.1149/1945-7111/ac0175] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]
33 Cai X, Zhu K, Liu B, Zhang Q, Luo Y, Zhang D. γ-Fe 2 O 3 /CNTs Composites for Electrochemical Detection of Paracetamol: Synthesis, Phase Transition and Enhanced Properties. J Electrochem Soc 2021;168:057511. [DOI: 10.1149/1945-7111/abfe78] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
34 Aydin Kirlangiç İ, Kara P, Ertaş FN. Development of Transition Metal Oxide Film Coated Platforms for Aptamer Based Electrochemical Detection of Ochratoxin A. J Electrochem Soc 2021;168:057516. [DOI: 10.1149/1945-7111/abff66] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Tembo PM, Dhabarde N, Subramanian V. TiO2 Nanotube-Based Sensor for the Detection of Cyanide in Water. J Electrochem Soc 2021;168:057527. [DOI: 10.1149/1945-7111/ac0228] [Reference Citation Analysis]
36 Pradana A, Septiani NLW, Dipojono HK, Suyatman, Yuliarto B. Review—Nanopillar Structure in the Direction of Optical Biosensor On-Chip Integration. J Electrochem Soc 2021;168:057505. [DOI: 10.1149/1945-7111/abfb3a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Wu S, Wang H, Cao T, Fan Z, Ma J, Liu L, Tong Z. Synthesis of Polyfluorinated Azobenzene Intercalated Tantalum Tungstate Nanocomposite for Determination of Dopamine and Ascorbic Acid. J Electrochem Soc 2021;168:037516. [DOI: 10.1149/1945-7111/abef4c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
38 Chen X, Hussain S, Hao Y, Tian X, Gao R. Review—Recent Advances of Signal Amplified Smart Conjugated Polymers for Optical Detection on Solid Support. ECS J Solid State Sci Technol 2021;10:037006. [DOI: 10.1149/2162-8777/abeed1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
39 Li Q, Mo G, Ye G. Unique Nitrogen-Doped Carbon Polyhedron Embedded with Co Derived Core-Shell Nanoparticles for the Electro-Catalysis towards Hydrogen Peroxide Redox Reaction and Nonenzymatic Detection. J Electrochem Soc 2021;168:037501. [DOI: 10.1149/1945-7111/abe723] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
40 Juang F, Wang T. Synthesis of Self-Assembled CuO Sphere Structures and Their Glucose Sensing Characteristics. J Electrochem Soc 2021;168:037508. [DOI: 10.1149/1945-7111/abebad] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Yang B, Han N, Hu S, Zhang L, Yi S, Zhang Z, Wang Y, Chen D, Gao Y. Cu/ZnO Nano-Thorn with Modifiable Morphology for Photoelectrochemical Detection of Glucose. J Electrochem Soc 2021;168:027516. [DOI: 10.1149/1945-7111/abe50e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
42 Dung NQ, Thi Thuy Duong T, Lam TD, Dung DD, Huy NN, Thanh DV. Communication—A Simple Empirical Method for Determination of CuOOH/CuO Redox Couple in Electrochemical Nonenzymatic Glucose Sensing. J Electrochem Soc 2021;168:017506. [DOI: 10.1149/1945-7111/abdb02] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]