BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pianykh OS, Langs G, Dewey M, Enzmann DR, Herold CJ, Schoenberg SO, Brink JA. Continuous Learning AI in Radiology: Implementation Principles and Early Applications. Radiology 2020;297:6-14. [DOI: 10.1148/radiol.2020200038] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Jia X, Cunha JAM, Rong Y. Artificial intelligence can overcome challenges in brachytherapy treatment planning. J Appl Clin Med Phys 2022;23:e13504. [PMID: 35041263 DOI: 10.1002/acm2.13504] [Reference Citation Analysis]
2 Toderis L, Vo A, Reychav I, Sayeed L, Mchaney R, Guindy M. Development of a mobile training app to assist radiographers’ diagnostic assessments. Health Informatics J 2022;28:146045822210837. [DOI: 10.1177/14604582221083780] [Reference Citation Analysis]
3 Eche T, Schwartz LH, Mokrane FZ, Dercle L. Toward Generalizability in the Deployment of Artificial Intelligence in Radiology: Role of Computation Stress Testing to Overcome Underspecification. Radiol Artif Intell 2021;3:e210097. [PMID: 34870222 DOI: 10.1148/ryai.2021210097] [Reference Citation Analysis]
4 Buckley BW, MacMahon PJ. Radiology and the Climate Crisis: Opportunities and Challenges-Radiology In Training. Radiology 2021;300:E339-41. [PMID: 34254853 DOI: 10.1148/radiol.2021210851] [Reference Citation Analysis]
5 Perkonigg M, Hofmanninger J, Herold CJ, Brink JA, Pianykh O, Prosch H, Langs G. Dynamic memory to alleviate catastrophic forgetting in continual learning with medical imaging. Nat Commun 2021;12:5678. [PMID: 34584080 DOI: 10.1038/s41467-021-25858-z] [Reference Citation Analysis]
6 Allen B, Dreyer K, Stibolt R Jr, Agarwal S, Coombs L, Treml C, Elkholy M, Brink L, Wald C. Evaluation and Real-World Performance Monitoring of Artificial Intelligence Models in Clinical Practice: Try It, Buy It, Check It. J Am Coll Radiol 2021;18:1489-96. [PMID: 34599876 DOI: 10.1016/j.jacr.2021.08.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Giansanti D, Di Basilio F. The Artificial Intelligence in Digital Radiology: Part 1: The Challenges, Acceptance and Consensus. Healthcare 2022;10:509. [DOI: 10.3390/healthcare10030509] [Reference Citation Analysis]
8 Tavakoli AA. [Introduction to programming for radiologists with the software R]. Radiologe 2021;61:296-9. [PMID: 33580274 DOI: 10.1007/s00117-021-00813-7] [Reference Citation Analysis]
9 Voets MM, Veltman J, Slump CH, Siesling S, Koffijberg H. Systematic Review of Health Economic Evaluations Focused on Artificial Intelligence in Healthcare: The Tortoise and the Cheetah. Value in Health 2021. [DOI: 10.1016/j.jval.2021.11.1362] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Tagde P, Tagde S, Bhattacharya T, Tagde P, Chopra H, Akter R, Kaushik D, Rahman MH. Blockchain and artificial intelligence technology in e-Health. Environ Sci Pollut Res Int 2021;28:52810-31. [PMID: 34476701 DOI: 10.1007/s11356-021-16223-0] [Reference Citation Analysis]
11 Spilseth B, McKnight CD, Li MD, Park CJ, Fried JG, Yi PH, Brian JM, Lehman CD, Wang XJ, Phalke V, Pakkal M, Baruah D, Khine PP, Fajardo LL. AUR-RRA Review: Logistics of Academic-Industry Partnerships in Artificial Intelligence. Acad Radiol 2021:S1076-6332(21)00355-X. [PMID: 34561163 DOI: 10.1016/j.acra.2021.08.002] [Reference Citation Analysis]
12 Boulemtafes A, Derhab A, Challal Y. Privacy-preserving deep learning for pervasive health monitoring: a study of environment requirements and existing solutions adequacy. Health Technol . [DOI: 10.1007/s12553-022-00640-3] [Reference Citation Analysis]
13 Wang ZJ. Probing an AI regression model for hand bone age determination using gradient-based saliency mapping. Sci Rep 2021;11:10610. [PMID: 34012111 DOI: 10.1038/s41598-021-90157-y] [Reference Citation Analysis]
14 Lemay A, Gros C, Zhuo Z, Zhang J, Duan Y, Cohen-Adad J, Liu Y. Automatic multiclass intramedullary spinal cord tumor segmentation on MRI with deep learning. Neuroimage Clin 2021;31:102766. [PMID: 34352654 DOI: 10.1016/j.nicl.2021.102766] [Reference Citation Analysis]
15 Goergen SK, Frazer HM, Reddy S. Quality use of artificial intelligence in medical imaging: What do radiologists need to know? J Med Imag Rad Onc 2022;66:225-32. [DOI: 10.1111/1754-9485.13379] [Reference Citation Analysis]
16 Bucolo M, Bucolo G, Buscarino A, Fiumara A, Fortuna L, Gagliano S, Guglielmelli E. Remote Ultrasound Scan Procedures with Medical Robots: Towards New Perspectives between Medicine and Engineering. Applied Bionics and Biomechanics 2022;2022:1-12. [DOI: 10.1155/2022/1072642] [Reference Citation Analysis]
17 Bahl M. Updates in Artificial Intelligence for Breast Imaging. Seminars in Roentgenology 2021. [DOI: 10.1053/j.ro.2021.12.005] [Reference Citation Analysis]
18 Liu Y, Ye F, Wang Y, Zheng X, Huang Y, Zhou J. Elaboration and Validation of a Nomogram Based on Axillary Ultrasound and Tumor Clinicopathological Features to Predict Axillary Lymph Node Metastasis in Patients With Breast Cancer. Front Oncol 2022;12:845334. [DOI: 10.3389/fonc.2022.845334] [Reference Citation Analysis]
19 Hickman SE, Baxter GC, Gilbert FJ. Adoption of artificial intelligence in breast imaging: evaluation, ethical constraints and limitations. Br J Cancer 2021;125:15-22. [PMID: 33772149 DOI: 10.1038/s41416-021-01333-w] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
20 El Naqa I, Li H, Fuhrman J, Hu Q, Gorre N, Chen W, Giger ML. Lessons learned in transitioning to AI in the medical imaging of COVID-19. J Med Imaging (Bellingham) 2021;8:010902-10902. [PMID: 34646912 DOI: 10.1117/1.JMI.8.S1.010902] [Reference Citation Analysis]
21 Cheng PM, Montagnon E, Yamashita R, Pan I, Cadrin-Chênevert A, Perdigón Romero F, Chartrand G, Kadoury S, Tang A. Deep Learning: An Update for Radiologists. Radiographics 2021;41:1427-45. [PMID: 34469211 DOI: 10.1148/rg.2021200210] [Reference Citation Analysis]
22 Bizzo BC, Almeida RR, Alkasab TK. Artificial Intelligence Enabling Radiology Reporting. Radiol Clin North Am 2021;59:1045-52. [PMID: 34689872 DOI: 10.1016/j.rcl.2021.07.004] [Reference Citation Analysis]