BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ramirez JM, Baertsch NA. The Dynamic Basis of Respiratory Rhythm Generation: One Breath at a Time. Annu Rev Neurosci 2018;41:475-99. [PMID: 29709210 DOI: 10.1146/annurev-neuro-080317-061756] [Cited by in Crossref: 37] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Baertsch NA, Severs LJ, Anderson TM, Ramirez JM. A spatially dynamic network underlies the generation of inspiratory behaviors. Proc Natl Acad Sci U S A 2019;116:7493-502. [PMID: 30918122 DOI: 10.1073/pnas.1900523116] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
2 Xu J, Yuan Q, Chen H. Correlation Analysis of Synchronization Type and Degree in Respiratory Neural Network. Comput Intell Neurosci 2021;2021:4475184. [PMID: 34987564 DOI: 10.1155/2021/4475184] [Reference Citation Analysis]
3 Pardo-Rodriguez M, Bojorges-Valdez E, Yanez-Suarez O. Bidirectional intrinsic modulation of EEG band power time series and spectral components of heart rate variability. Auton Neurosci 2021;232:102776. [PMID: 33676350 DOI: 10.1016/j.autneu.2021.102776] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Berg RW, Willumsen A, Lindén H. When networks walk a fine line: balance of excitation and inhibition in spinal motor circuits. Current Opinion in Physiology 2019;8:76-83. [DOI: 10.1016/j.cophys.2019.01.006] [Cited by in Crossref: 11] [Cited by in F6Publishing: 1] [Article Influence: 3.7] [Reference Citation Analysis]
5 Bi H, di Volo M, Torcini A. Asynchronous and Coherent Dynamics in Balanced Excitatory-Inhibitory Spiking Networks. Front Syst Neurosci 2021;15:752261. [PMID: 34955768 DOI: 10.3389/fnsys.2021.752261] [Reference Citation Analysis]
6 Ramirez JM, Burgraff NJ, Wei AD, Baertsch NA, Varga AG, Baghdoyan HA, Lydic R, Morris KF, Bolser DC, Levitt ES. Neuronal mechanisms underlying opioid-induced respiratory depression: our current understanding. J Neurophysiol 2021;125:1899-919. [PMID: 33826874 DOI: 10.1152/jn.00017.2021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Lemieux M, Thiry L, Laflamme OD, Bretzner F. Role of DSCAM in the Development of Neural Control of Movement and Locomotion. Int J Mol Sci 2021;22:8511. [PMID: 34445216 DOI: 10.3390/ijms22168511] [Reference Citation Analysis]
8 Burgraff NJ, Phillips RS, Severs LJ, Bush NE, Baertsch NA, Ramirez JM. Inspiratory rhythm generation is stabilized by Ih. J Neurophysiol 2022;128:181-96. [PMID: 35675444 DOI: 10.1152/jn.00150.2022] [Reference Citation Analysis]
9 Mutolo D, Bongianni F, Pantaleo T, Cinelli E. The lamprey respiratory network: Some evolutionary aspects. Respir Physiol Neurobiol 2021;294:103766. [PMID: 34329767 DOI: 10.1016/j.resp.2021.103766] [Reference Citation Analysis]
10 Jung F, Witte V, Yanovsky Y, Klumpp M, Brankack J, Tort ABL, Dr Draguhn A. Differential modulation of parietal cortex activity by respiration and θ-oscillations. J Neurophysiol 2022. [PMID: 35171722 DOI: 10.1152/jn.00376.2021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
11 Varga AG, Maletz SN, Bateman JT, Reid BT, Levitt ES. Neurochemistry of the Kölliker-Fuse nucleus from a respiratory perspective. J Neurochem 2021;156:16-37. [PMID: 32396650 DOI: 10.1111/jnc.15041] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Yeung DT, Bough KJ, Harper JR, Platoff GE Jr. National Institutes of Health (NIH) Executive Meeting Summary: Developing Medical Countermeasures to Rescue Opioid-Induced Respiratory Depression (a Trans-Agency Scientific Meeting)-August 6/7, 2019. J Med Toxicol 2020;16:87-105. [PMID: 31853736 DOI: 10.1007/s13181-019-00750-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
13 Phillips RS, Koizumi H, Molkov YI, Rubin JE, Smith JC. Predictions and experimental tests of a new biophysical model of the mammalian respiratory oscillator. eLife 2022;11:e74762. [DOI: 10.7554/elife.74762] [Reference Citation Analysis]
14 Golowasch J. Neuromodulation of central pattern generators and its role in the functional recovery of central pattern generator activity. J Neurophysiol 2019;122:300-15. [PMID: 31066614 DOI: 10.1152/jn.00784.2018] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
15 Nieder A, Mooney R. The neurobiology of innate, volitional and learned vocalizations in mammals and birds. Philos Trans R Soc Lond B Biol Sci 2020;375:20190054. [PMID: 31735150 DOI: 10.1098/rstb.2019.0054] [Cited by in Crossref: 27] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
16 Dhingra R, Kola G, Lewis S, Dutschmann M. Thoracic sympathetic chain stimulation modulates and entrains the respiratory pattern. Autonomic Neuroscience 2019;218:16-24. [DOI: 10.1016/j.autneu.2019.01.008] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
17 Wittman S, Abdala AP, Rubin JE. Reduced computational modelling of Kölliker-Fuse contributions to breathing patterns in Rett syndrome. J Physiol 2019;597:2651-72. [PMID: 30908648 DOI: 10.1113/JP277592] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
18 Olivares MJ, Flores A, von Bernhardi R, Eugenín J. Astrocytic contribution to glutamate-related central respiratory chemoreception in vertebrates. Respir Physiol Neurobiol 2021;294:103744. [PMID: 34302992 DOI: 10.1016/j.resp.2021.103744] [Reference Citation Analysis]
19 Severs L, Vlemincx E, Ramirez J. The psychophysiology of the sigh: I: The sigh from the physiological perspective. Biological Psychology 2022. [DOI: 10.1016/j.biopsycho.2022.108313] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Staszelis A, Mofleh R, Kocsis B. The effect of ketamine on delta-range coupling between prefrontal cortex and hippocampus supported by respiratory rhythmic input from the olfactory bulb. Brain Res 2022;1791:147996. [PMID: 35779582 DOI: 10.1016/j.brainres.2022.147996] [Reference Citation Analysis]
21 Fortuna MG, Kügler S, Hülsmann S. Probing the function of glycinergic neurons in the mouse respiratory network using optogenetics. Respir Physiol Neurobiol 2019;265:141-52. [PMID: 30395936 DOI: 10.1016/j.resp.2018.10.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
22 Ben-Tal A, Wang Y, Leite MCA. The logic behind neural control of breathing pattern. Sci Rep 2019;9:9078. [PMID: 31235701 DOI: 10.1038/s41598-019-45011-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
23 Daur N, Nadim F, Bucher D. Synaptic Dynamics Convey Differential Sensitivity to Input Pattern Changes in Two Muscles Innervated by the Same Motor Neurons. eNeuro 2021;8:ENEURO. [PMID: 34764189 DOI: 10.1523/ENEURO.0351-21.2021] [Reference Citation Analysis]
24 Ramirez JM, Baertsch N. Defining the Rhythmogenic Elements of Mammalian Breathing. Physiology (Bethesda) 2018;33:302-16. [PMID: 30109823 DOI: 10.1152/physiol.00025.2018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
25 Dhingra RR, Furuya WI, Galán RF, Dutschmann M. Excitation-inhibition balance regulates the patterning of spinal and cranial inspiratory motor outputs in rats in situ. Respiratory Physiology & Neurobiology 2019;266:95-102. [DOI: 10.1016/j.resp.2019.05.001] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
26 Phillips RS, John TT, Koizumi H, Molkov YI, Smith JC. Biophysical mechanisms in the mammalian respiratory oscillator re-examined with a new data-driven computational model. Elife 2019;8:e41555. [PMID: 30907727 DOI: 10.7554/eLife.41555] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
27 Baertsch NA, Bush NE, Burgraff NJ, Ramirez JM. Dual mechanisms of opioid-induced respiratory depression in the inspiratory rhythm-generating network. Elife 2021;10:e67523. [PMID: 34402425 DOI: 10.7554/eLife.67523] [Reference Citation Analysis]
28 Muscato AJ, Powell D, Bulhan W, Mackenzie ES, Pupo A, Rolph M, Christie AE, Dickinson PS. Structural variation between neuropeptide isoforms affects function in the lobster cardiac system. Gen Comp Endocrinol 2022;:114065. [PMID: 35623446 DOI: 10.1016/j.ygcen.2022.114065] [Reference Citation Analysis]
29 Braegelmann KM, Meza A, Agbeh AE, Fields DP, Baker TL. Retinoic acid receptor alpha activation is necessary and sufficient for plasticity induced by recurrent central apnea. J Appl Physiol (1985) 2021;130:836-45. [PMID: 33411644 DOI: 10.1152/japplphysiol.00287.2020] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Huff A, Karlen-amarante M, Pitts T, Ramirez JM. Optogenetic stimulation of pre–Bötzinger complex reveals novel circuit interactions in swallowing–breathing coordination. Proc Natl Acad Sci U S A 2022;119:e2121095119. [DOI: 10.1073/pnas.2121095119] [Reference Citation Analysis]
31 Peña-Ortega F. Clinical and experimental aspects of breathing modulation by inflammation. Auton Neurosci 2019;216:72-86. [PMID: 30503161 DOI: 10.1016/j.autneu.2018.11.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
32 Rubin JE, Smith JC. Robustness of respiratory rhythm generation across dynamic regimes. PLoS Comput Biol 2019;15:e1006860. [PMID: 31361738 DOI: 10.1371/journal.pcbi.1006860] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.7] [Reference Citation Analysis]
33 Tantirigama MLS, Zolnik T, Judkewitz B, Larkum ME, Sachdev RNS. Perspective on the Multiple Pathways to Changing Brain States. Front Syst Neurosci 2020;14:23. [PMID: 32457583 DOI: 10.3389/fnsys.2020.00023] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
34 Betka S, Adler D, Similowski T, Blanke O. Breathing Control, Brain, and Bodily Self-consciousness: Toward Immersive Digiceuticals to Alleviate Respiratory Suffering. Biol Psychol 2022;:108329. [PMID: 35452780 DOI: 10.1016/j.biopsycho.2022.108329] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Beyeler SA, Hodges MR, Huxtable AG. Impact of inflammation on developing respiratory control networks: rhythm generation, chemoreception and plasticity. Respir Physiol Neurobiol 2020;274:103357. [PMID: 31899353 DOI: 10.1016/j.resp.2019.103357] [Reference Citation Analysis]
36 Ghali MGZ, Beshay S. Role of fast inhibitory synaptic transmission in neonatal respiratory rhythmogenesis and pattern formation. Mol Cell Neurosci 2019;100:103400. [PMID: 31472222 DOI: 10.1016/j.mcn.2019.103400] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
37 Schneider AC, Fox D, Itani O, Golowasch J, Bucher D, Nadim F. Frequency-Dependent Action of Neuromodulation. eNeuro 2021;8:ENEURO. [PMID: 34593519 DOI: 10.1523/ENEURO.0338-21.2021] [Reference Citation Analysis]
38 Aquino YC, Cabral LM, Miranda NC, Naccarato MC, Falquetto B, Moreira TS, Takakura AC. Respiratory disorders of Parkinson's disease. J Neurophysiol 2022;127:1-15. [PMID: 34817281 DOI: 10.1152/jn.00363.2021] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
39 Baertsch NA, Ramirez JM. Insights into the dynamic control of breathing revealed through cell-type-specific responses to substance P. Elife 2019;8:e51350. [PMID: 31804180 DOI: 10.7554/eLife.51350] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
40 Juárez-Vidales JJ, Pérez-Ortega J, Lorea-Hernández JJ, Méndez-Salcido F, Peña-Ortega F. Configuration and dynamics of dominant inspiratory multineuronal activity patterns during eupnea and gasping generation in vitro. J Neurophysiol 2021;125:1289-306. [PMID: 33502956 DOI: 10.1152/jn.00563.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Cinelli E, Mutolo D, Pantaleo T, Bongianni F. Neural mechanisms underlying respiratory regulation within the preBötzinger complex of the rabbit. Respir Physiol Neurobiol 2021;293:103736. [PMID: 34224867 DOI: 10.1016/j.resp.2021.103736] [Reference Citation Analysis]
42 Lindén H, Berg RW. Why Firing Rate Distributions Are Important for Understanding Spinal Central Pattern Generators. Front Hum Neurosci 2021;15:719388. [PMID: 34539363 DOI: 10.3389/fnhum.2021.719388] [Reference Citation Analysis]