BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Starr AE, Deeke SA, Ning Z, Chiang CK, Zhang X, Mottawea W, Singleton R, Benchimol EI, Wen M, Mack DR, Stintzi A, Figeys D. Proteomic analysis of ascending colon biopsies from a paediatric inflammatory bowel disease inception cohort identifies protein biomarkers that differentiate Crohn's disease from UC. Gut 2017;66:1573-83. [PMID: 27216938 DOI: 10.1136/gutjnl-2015-310705] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 9.4] [Reference Citation Analysis]
Number Citing Articles
1 Yu ZQ, Wang WF, Zhu CZ, Zhang KH, Chen XC, Chen JY. The Polymorphism rs17525495 of LTA4H Is Associated with Susceptibility of Crohn's Disease instead of Intestinal Tuberculosis in a Chinese Han Population. Biomed Res Int 2019;2019:9537050. [PMID: 31093505 DOI: 10.1155/2019/9537050] [Reference Citation Analysis]
2 Jablaoui A, Kriaa A, Mkaouar H, Akermi N, Soussou S, Wysocka M, Wołoszyn D, Amouri A, Gargouri A, Maguin E, Lesner A, Rhimi M. Fecal Serine Protease Profiling in Inflammatory Bowel Diseases. Front Cell Infect Microbiol 2020;10:21. [PMID: 32117798 DOI: 10.3389/fcimb.2020.00021] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 12.5] [Reference Citation Analysis]
3 Karaskova E, Velganova-Veghova M, Geryk M, Foltenova H, Kucerova V, Karasek D. Role of Adipose Tissue in Inflammatory Bowel Disease. Int J Mol Sci 2021;22:4226. [PMID: 33921758 DOI: 10.3390/ijms22084226] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Shen M, Meng L. Peripheral blood miR-372 as a biomarker for ulcerative colitis via direct targeting of NLRP12. Exp Ther Med 2019;18:1486-92. [PMID: 31363381 DOI: 10.3892/etm.2019.7707] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
5 Ahmed S, Vachaparambil C, Kugathasan S. Pediatric inflammatory bowel disease: continuous lessons for adult inflammatory bowel disease. Curr Opin Gastroenterol 2019;35:265-74. [PMID: 31021923 DOI: 10.1097/MOG.0000000000000548] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
6 Ahlawat S, Kumar P, Mohan H, Goyal S, Sharma KK. Inflammatory bowel disease: tri-directional relationship between microbiota, immune system and intestinal epithelium. Crit Rev Microbiol 2021;47:254-73. [PMID: 33576711 DOI: 10.1080/1040841X.2021.1876631] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
7 Nyman TA, Lorey MB, Cypryk W, Matikainen S. Mass spectrometry-based proteomic exploration of the human immune system: focus on the inflammasome, global protein secretion, and T cells. Expert Rev Proteomics 2017;14:395-407. [PMID: 28406322 DOI: 10.1080/14789450.2017.1319768] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
8 Baldan-Martin M, Chaparro M, Gisbert JP. Tissue Proteomic Approaches to Understand the Pathogenesis of Inflammatory Bowel Disease. Inflamm Bowel Dis 2021;27:1184-200. [PMID: 33529308 DOI: 10.1093/ibd/izaa352] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Schniers A, Goll R, Pasing Y, Sørbye SW, Florholmen J, Hansen T. Ulcerative colitis: functional analysis of the in-depth proteome. Clin Proteomics 2019;16:4. [PMID: 30718987 DOI: 10.1186/s12014-019-9224-6] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
10 Rössl A, Denoncourt A, Lin MS, Downey M. A synthetic non-histone substrate to study substrate targeting by the Gcn5 HAT and sirtuin HDACs. J Biol Chem 2019;294:6227-39. [PMID: 30804216 DOI: 10.1074/jbc.RA118.006051] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 1.7] [Reference Citation Analysis]
11 Huang X, Li Y, Zhuang P, Liu X, Zhang Y, Zhang P, Jiao J. Habitual Fish Oil Supplementation and Risk of Incident Inflammatory Bowel Diseases: A Prospective Population-Based Study. Front Nutr 2022;9:905162. [DOI: 10.3389/fnut.2022.905162] [Reference Citation Analysis]
12 Longo S, Chieppa M, Cossa LG, Spinelli CC, Greco M, Maffia M, Giudetti AM. New Insights into Inflammatory Bowel Diseases from Proteomic and Lipidomic Studies. Proteomes 2020;8:18. [PMID: 32784952 DOI: 10.3390/proteomes8030018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Li H, Zhang X, Chen R, Cheng K, Ning Z, Li J, Twine S, Stintzi A, Mack D, Figeys D. Elevated colonic microbiota-associated paucimannosidic and truncated N-glycans in pediatric ulcerative colitis. J Proteomics 2021;249:104369. [PMID: 34481999 DOI: 10.1016/j.jprot.2021.104369] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Colombo G, Clemente N, Zito A, Bracci C, Colombo FS, Sangaletti S, Jachetti E, Ribaldone DG, Caviglia GP, Pastorelli L, De Andrea M, Naviglio S, Lucafò M, Stocco G, Grolla AA, Campolo M, Casili G, Cuzzocrea S, Esposito E, Malavasi F, Genazzani AA, Porta C, Travelli C. Neutralization of extracellular NAMPT (nicotinamide phosphoribosyltransferase) ameliorates experimental murine colitis. J Mol Med (Berl) 2020;98:595-612. [PMID: 32338310 DOI: 10.1007/s00109-020-01892-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
15 Denadai-Souza A, Bonnart C, Tapias NS, Marcellin M, Gilmore B, Alric L, Bonnet D, Burlet-Schiltz O, Hollenberg MD, Vergnolle N, Deraison C. Functional Proteomic Profiling of Secreted Serine Proteases in Health and Inflammatory Bowel Disease. Sci Rep 2018;8:7834. [PMID: 29777136 DOI: 10.1038/s41598-018-26282-y] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 8.0] [Reference Citation Analysis]
16 Konnikova L, Boschetti G, Rahman A, Mitsialis V, Lord J, Richmond C, Tomov VT, Gordon W, Jelinsky S, Canavan J, Liss A, Wall S, Field M, Zhou F, Goldsmith JD, Bewtra M, Breault DT, Merad M, Snapper SB. High-dimensional immune phenotyping and transcriptional analyses reveal robust recovery of viable human immune and epithelial cells from frozen gastrointestinal tissue. Mucosal Immunol 2018;11:1684-93. [PMID: 30111863 DOI: 10.1038/s41385-018-0047-y] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
17 Starr AE, Deeke SA, Ning Z, de Nanassy J, Singleton R, Benchimol EI, Mack DR, Stintzi A, Figeys D. Associations between Cellular Energy and Pediatric Inflammatory Bowel Disease Patient Response to Treatment. J Proteome Res 2021;20:4393-404. [PMID: 34424714 DOI: 10.1021/acs.jproteome.1c00341] [Reference Citation Analysis]
18 Wu LY, Ma XP, Shi Y, Bao CH, Jin XM, Lu Y, Zhao JM, Zhou CL, Chen D, Liu HR. Alterations in microRNA expression profiles in inflamed and noninflamed ascending colon mucosae of patients with active Crohn's disease. J Gastroenterol Hepatol 2017;32:1706-15. [PMID: 28261881 DOI: 10.1111/jgh.13778] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
19 Titz B, Gadaleta RM, Lo Sasso G, Elamin A, Ekroos K, Ivanov NV, Peitsch MC, Hoeng J. Proteomics and Lipidomics in Inflammatory Bowel Disease Research: From Mechanistic Insights to Biomarker Identification.Int J Mol Sci. 2018;19. [PMID: 30223557 DOI: 10.3390/ijms19092775] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
20 Deeke SA, Starr AE, Ning Z, Ahmadi S, Zhang X, Mayne J, Chiang C, Singleton R, Benchimol EI, Mack DR, Stintzi A, Figeys D. Open: Mucosal-luminal interface proteomics reveals biomarkers of pediatric inflammatory bowel disease-associated colitis: . American Journal of Gastroenterology 2018;113:713-24. [DOI: 10.1038/s41395-018-0024-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
21 Pang XX, Ansari AR, Yang WJ, Niu XY, Dong L, Li HZ, Xu FL, Zhang ZW, Xiao K, Hui S. Visfatin Regulates Inflammatory Mediators in Mouse Intestinal Mucosa Through Toll-Like Receptors Signaling Under Lipopolysaccharide Stress. Arch Immunol Ther Exp (Warsz) 2021;69:11. [PMID: 33856572 DOI: 10.1007/s00005-021-00611-y] [Reference Citation Analysis]
22 Li L, Zhang X, Ning Z, Mayne J, Moore JI, Butcher J, Chiang CK, Mack D, Stintzi A, Figeys D. Evaluating in Vitro Culture Medium of Gut Microbiome with Orthogonal Experimental Design and a Metaproteomics Approach. J Proteome Res 2018;17:154-63. [PMID: 29130306 DOI: 10.1021/acs.jproteome.7b00461] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
23 Arafah K, Kriegsmann M, Renner M, Lasitschka F, Fresnais M, Kriegsmann K, von Winterfeld M, Goeppert B, Kriegsmann J, Casadonte R, Kazdal D, Bulet P, Longuespée R. Microproteomics and Immunohistochemistry Reveal Differences in Aldo-Keto Reductase Family 1 Member C3 in Tissue Specimens of Ulcerative Colitis and Crohn's Disease. Proteomics Clin Appl 2020;14:e1900110. [PMID: 32003543 DOI: 10.1002/prca.201900110] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Cui G, Fan Q, Li Z, Goll R, Florholmen J. Evaluation of anti-TNF therapeutic response in patients with inflammatory bowel disease: Current and novel biomarkers. EBioMedicine 2021;66:103329. [PMID: 33862588 DOI: 10.1016/j.ebiom.2021.103329] [Reference Citation Analysis]
25 Gisbert JP, Chaparro M. Clinical Usefulness of Proteomics in Inflammatory Bowel Disease: A Comprehensive Review.J Crohns Colitis. 2019;13:374-384. [PMID: 30307487 DOI: 10.1093/ecco-jcc/jjy158] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
26 Ning L, Shan G, Sun Z, Lou X, Zhang F, Li S, Du H, Yu J, Chen H, Xu G. Serum proteome profiles to differentiate Crohn disease from intestinal tuberculosis and primary intestinal lymphoma: A pilot study. Medicine (Baltimore) 2019;98:e18304. [PMID: 31852111 DOI: 10.1097/MD.0000000000018304] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
27 Morilla I, Léger T, Marah A, Pic I, Zaag H, Ogier-Denis E. Singular manifolds of proteomic drivers to model the evolution of inflammatory bowel disease status.Sci Rep. 2020;10:19066. [PMID: 33149233 DOI: 10.1038/s41598-020-76011-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Kriaa A, Jablaoui A, Mkaouar H, Akermi N, Maguin E, Rhimi M. Serine proteases at the cutting edge of IBD: Focus on gastrointestinal inflammation. FASEB J 2020;34:7270-82. [PMID: 32307770 DOI: 10.1096/fj.202000031RR] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
29 El-khateeb E, Vasilogianni A, Alrubia S, Al-majdoub ZM, Couto N, Howard M, Barber J, Rostami-hodjegan A, Achour B. Quantitative mass spectrometry-based proteomics in the era of model-informed drug development: Applications in translational pharmacology and recommendations for best practice. Pharmacology & Therapeutics 2019;203:107397. [DOI: 10.1016/j.pharmthera.2019.107397] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
30 Mainoli B, Hirota S, Edgington-mitchell LE, Lu C, Dufour A. Proteomics and Imaging in Crohn’s Disease: TAILS of Unlikely Allies. Trends in Pharmacological Sciences 2020;41:74-84. [DOI: 10.1016/j.tips.2019.11.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
31 Eder P, Adler M, Dobrowolska A, Kamhieh-Milz J, Witowski J. The Role of Adipose Tissue in the Pathogenesis and Therapeutic Outcomes of Inflammatory Bowel Disease. Cells 2019;8:E628. [PMID: 31234447 DOI: 10.3390/cells8060628] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
32 Chuong KH, Mack DR, Stintzi A, O'Doherty KC. Human Microbiome and Learning Healthcare Systems: Integrating Research and Precision Medicine for Inflammatory Bowel Disease. OMICS 2018;22:119-26. [PMID: 28282257 DOI: 10.1089/omi.2016.0185] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
33 Assadsangabi A, Evans CA, Corfe BM, Lobo A. Application of Proteomics to Inflammatory Bowel Disease Research: Current Status and Future Perspectives. Gastroenterol Res Pract 2019;2019:1426954. [PMID: 30774653 DOI: 10.1155/2019/1426954] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
34 Bilski J, Mazur-Bialy A, Wojcik D, Surmiak M, Magierowski M, Sliwowski Z, Pajdo R, Kwiecien S, Danielak A, Ptak-Belowska A, Brzozowski T. Role of Obesity, Mesenteric Adipose Tissue, and Adipokines in Inflammatory Bowel Diseases.Biomolecules. 2019;9. [PMID: 31779136 DOI: 10.3390/biom9120780] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
35 Bai D, Zhao Y, Zhu Q, Zhou Y, Zhao Y, Zhang T, Guo Q, Lu N. LZ205, a newly synthesized flavonoid compound, exerts anti-inflammatory effect by inhibiting M1 macrophage polarization through regulating PI3K/AKT/mTOR signaling pathway. Experimental Cell Research 2018;364:84-94. [DOI: 10.1016/j.yexcr.2018.01.033] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
36 Ning L, Shan G, Sun Z, Zhang F, Xu C, Lou X, Li S, Du H, Chen H, Xu G. Quantitative Proteomic Analysis Reveals the Deregulation of Nicotinamide Adenine Dinucleotide Metabolism and CD38 in Inflammatory Bowel Disease. Biomed Res Int. 2019;2019:3950628. [PMID: 31179321 DOI: 10.1155/2019/3950628] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
37 Colombo G, Travelli C, Porta C, Genazzani AA. Extracellular nicotinamide phosphoribosyltransferase boosts IFNγ-induced macrophage polarization independently of TLR4. iScience 2022;25:104147. [PMID: 35402885 DOI: 10.1016/j.isci.2022.104147] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Schniers A, Anderssen E, Fenton CG, Goll R, Pasing Y, Paulssen RH, Florholmen J, Hansen T. The Proteome of Ulcerative Colitis in Colon Biopsies from Adults - Optimized Sample Preparation and Comparison with Healthy Controls. Proteomics Clin Appl 2017;11. [PMID: 28856821 DOI: 10.1002/prca.201700053] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
39 Pisani LF, Moriggi M, Gelfi C, Vecchi M, Pastorelli L. Proteomic insights on the metabolism in inflammatory bowel disease. World J Gastroenterol 2020; 26(7): 696-705 [PMID: 32116417 DOI: 10.3748/wjg.v26.i7.696] [Cited by in CrossRef: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
40 Sun XL, Qiao LC, Gong J, Wen K, Xu ZZ, Yang BL. Proteomics identifies a novel role of fibrinogen-like protein 1 in Crohn’s disease. World J Gastroenterol 2021; 27(35): 5946-5957 [PMID: 34629811 DOI: 10.3748/wjg.v27.i35.5946] [Cited by in CrossRef: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 de Souza HSP, Fiocchi C, Iliopoulos D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat Rev Gastroenterol Hepatol. 2017;14:739-749. [PMID: 28831186 DOI: 10.1038/nrgastro.2017.110] [Cited by in Crossref: 199] [Cited by in F6Publishing: 170] [Article Influence: 39.8] [Reference Citation Analysis]
42 Neubauer K, Bednarz-Misa I, Walecka-Zacharska E, Wierzbicki J, Agrawal A, Gamian A, Krzystek-Korpacka M. Oversecretion and Overexpression of Nicotinamide Phosphoribosyltransferase/Pre-B Colony-Enhancing Factor/Visfatin in Inflammatory Bowel Disease Reflects the Disease Activity, Severity of Inflammatory Response and Hypoxia. Int J Mol Sci. 2019;20. [PMID: 30621173 DOI: 10.3390/ijms20010166] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
43 Gerner RR, Klepsch V, Macheiner S, Arnhard K, Adolph TE, Grander C, Wieser V, Pfister A, Moser P, Hermann-Kleiter N, Baier G, Oberacher H, Tilg H, Moschen AR. NAD metabolism fuels human and mouse intestinal inflammation. Gut 2018;67:1813-23. [PMID: 28877980 DOI: 10.1136/gutjnl-2017-314241] [Cited by in Crossref: 59] [Cited by in F6Publishing: 56] [Article Influence: 14.8] [Reference Citation Analysis]
44 Travelli C, Colombo G, Mola S, Genazzani AA, Porta C. NAMPT: A pleiotropic modulator of monocytes and macrophages. Pharmacol Res. 2018;135:25-36. [PMID: 30031171 DOI: 10.1016/j.phrs.2018.06.022] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
45 Al-Mustanjid M, Mahmud SMH, Royel MRI, Rahman MH, Islam T, Rahman MR, Moni MA. Detection of molecular signatures and pathways shared in inflammatory bowel disease and colorectal cancer: A bioinformatics and systems biology approach.Genomics. 2020;112:3416-3426. [PMID: 32535071 DOI: 10.1016/j.ygeno.2020.06.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
46 Beck LC, Granger CL, Masi AC, Stewart CJ. Use of omic technologies in early life gastrointestinal health and disease: from bench to bedside. Expert Rev Proteomics 2021;18:247-59. [PMID: 33896313 DOI: 10.1080/14789450.2021.1922278] [Reference Citation Analysis]
47 Park J, Jeong D, Chung YW, Han S, Kim DH, Yu J, Cheon JH, Ryu JH. Proteomic analysis-based discovery of a novel biomarker that differentiates intestinal Behçet's disease from Crohn's disease. Sci Rep 2021;11:11019. [PMID: 34040049 DOI: 10.1038/s41598-021-90250-2] [Reference Citation Analysis]