BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mascarenhas Saraiva MJ, Afonso J, Ribeiro T, Ferreira J, Cardoso H, Andrade AP, Parente M, Natal R, Mascarenhas Saraiva M, Macedo G. Deep learning and capsule endoscopy: automatic identification and differentiation of small bowel lesions with distinct haemorrhagic potential using a convolutional neural network. BMJ Open Gastroenterol 2021;8:e000753. [PMID: 34580155 DOI: 10.1136/bmjgast-2021-000753] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
Number Citing Articles
1 Said S, Youssef S, Elagamy MN. The use of Capsule Endoscopic Examination Videos in the Detection of Abnormalities in the Gastrointestinal Tract. 2022 5th International Conference on Communications, Signal Processing, and their Applications (ICCSPA) 2022. [DOI: 10.1109/iccspa55860.2022.10019003] [Reference Citation Analysis]
2 Ali S. Where do we stand in AI for endoscopic image analysis? Deciphering gaps and future directions. NPJ Digit Med 2022;5:184. [PMID: 36539473 DOI: 10.1038/s41746-022-00733-3] [Reference Citation Analysis]
3 Messmann H, Bisschops R, Antonelli G, Libânio D, Sinonquel P, Abdelrahim M, Ahmad OF, Areia M, Bergman JJGHM, Bhandari P, Boskoski I, Dekker E, Domagk D, Ebigbo A, Eelbode T, Eliakim R, Häfner M, Haidry RJ, Jover R, Kaminski MF, Kuvaev R, Mori Y, Palazzo M, Repici A, Rondonotti E, Rutter MD, Saito Y, Sharma P, Spada C, Spadaccini M, Veitch A, Gralnek IM, Hassan C, Dinis-Ribeiro M. Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy 2022;54:1211-31. [PMID: 36270318 DOI: 10.1055/a-1950-5694] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Kawamoto A, Takenaka K, Okamoto R, Watanabe M, Ohtsuka K. Systematic review of artificial intelligence-based image diagnosis for inflammatory bowel disease. Dig Endosc 2022;34:1311-9. [PMID: 35441381 DOI: 10.1111/den.14334] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Leenhardt R, Koulaouzidis A, Histace A, Baatrup G, Beg S, Bourreille A, de Lange T, Eliakim R, Iakovidis D, Dam Jensen M, Keuchel M, Margalit Yehuda R, McNamara D, Mascarenhas M, Spada C, Segui S, Smedsrud P, Toth E, Tontini GE, Klang E, Dray X, Kopylov U. Key research questions for implementation of artificial intelligence in capsule endoscopy. Therap Adv Gastroenterol 2022;15:17562848221132683. [PMID: 36338789 DOI: 10.1177/17562848221132683] [Reference Citation Analysis]
6 Iwata E, Niikura R, Aoki T, Nakada A, Kawahara T, Kurose Y, Harada T, Kawai T. Automatic detection of small-bowel lesions from capsule endoscopy images using a deep convolutional neural network: A systematic review and meta-analysis. Prog dig Endosc 2022;100:27-35. [DOI: 10.11641/pde.100.1_27] [Reference Citation Analysis]
7 Chetcuti Zammit S, Sidhu R. Artificial intelligence within the small bowel: are we lagging behind? Curr Opin Gastroenterol 2022;38:307-17. [PMID: 35645023 DOI: 10.1097/MOG.0000000000000827] [Reference Citation Analysis]